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ABSTRACT
The quality of a digital map is of utmost importance for geo-aware
services. However, maintaining an accurate and up-to-date map
is a highly challenging task that usually involves a substantial
amount of manual work. To reduce the manual efforts, methods
have been proposed to automatically derive road attributes by min-
ing GPS traces. However, previous methods always modeled each
road attribute separately based on intuitive hand-crafted features
extracted from GPS traces. This observation motivates us to pro-
pose a machine learning based method to learn joint features not
only from GPS traces but also from map data. To model the rela-
tions among the target road attributes, we extract low-level shared
feature embeddings via multi-task learning, while still being able to
generate task-specific fused representations by applying attention-
based feature fusion. To model the relations between the target
road attributes and other contextual information that is available
from a digital map, we propose to leverage map tiles at road centers
as visual features that capture the information of the surrounding
geographic objects around the roads. We perform extensive experi-
ments on the OpenStreetMap where state-of-the-art classification
accuracy has been obtained compared to existing road attribute
detection approaches.
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1 INTRODUCTION
The service of ride-hailing providers significantly relies on the
quality of the underlying digital map. Incomplete map data such as a
missing road or even a missing road attribute can lead to misleading
routing decisions or inaccurate estimation of a driver’s arrival time.
However, the updating of both commercial and free maps still
heavily relies on the manual annotations from human. The high
cost results in maps with low completeness and inaccurate outdated
data. Take the OpenStreetMap (OSM) [9] as an example, which
provides the community a user-generated map of the world, its
data completeness and accuracy vary significantly in different cities.
For example, in Singapore, while most of the roads are annotated
with the one-way or two-way tags, only about 68% and 23% of the
roads are annotated with the number of lanes and the speed limit
in the downtown area.

In the past decade, only a few efforts have been made on the
automatic derivation of road attributes from vehicles’ GPS traces,
to reduce the high cost of manual annotations of map data [7, 21].
These methods first map GPS trajectories to road networks by
applying map matching algorithms. Next, they extract features
from the GPS trajectories that are mapped to each road segment,
and model the road attribute detection as a multi-class classifica-
tion problem. Interestingly, the relations between different road
attributes are always neglected in the previous work as each road
attribute is modeled based on an individual classifier such as the
decision tree [22]. Moreover, the impact of existing map data on the
detection of missing road attributes has also not been investigated
yet in previous methods. Intuitively, the speed limit of a road is
related to the road type and even the surrounding environment in
the vicinity of that road. Thus, the existing map data can be of great
importance for the inference of a missing road attribute.

To address the above issues, we present a multi-task learning
framework for road attribute detection via joint analysis of map data
and GPS traces. Figure 1 illustrates the overview of our proposed
system. As the sensor readings in GPS traces are continuous that
are difficult to be directly used as the input features to a classifier,
we compute the distributions of location, bearing, and speed in GPS
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Figure 1: Overview of our proposed multi-task learning
based road attribute detection.

traces that are associated with each road segment, and normalize
the histograms using the L1 norm. Additionally, we extract features
from the existing map by cropping a three-channel RGB image at
the road center from map tiles. This image captures the contextual
information around the road that can be very helpful for the missing
road attribute detection.

Based on the observation that road attributes are always related
to one another, we process the initial trace-based and map-based
features by shared weight embedding layers to learn common fea-
ture embeddings among multiple tasks. The feature embeddings are
next fused based on task-specific attention scores that are estimated
by the attention module. This is based on the observation that the
importance of a feature embedding is usually different for different
tasks. For example, the location embedding can be more important
to derive the number of lanes, and the speed embedding can be
more important for the speed limit estimation. Finally, we model
the detection of each road attribute as a multi-class classification
problem, and optimize the neural networks by minimizing the over-
all loss that is defined as a weighted sum of the losses in each task.
We summarize the key contributions of this work as follows:

• To the best of our knowledge, we are the first to investigate
the use of the geographic information extracted from existing
map data on the problem of road attribute detection.

• We present an effective multi-task learning framework for
road attribute detection. The framework consists of three
components: namely shared weight feature embedding lay-
ers, task-specific attention-based feature fusion layers, and
task-specific classification layers.

• We conduct experiments on the OpenStreetMap data in Sin-
gapore. Our method is shown to significantly improve the
classification accuracy, and overall provides new insights
into the challenges in road attribute detection.

2 ROAD FEATURE EXTRACTION
We extract features to represent a road segment from two types of
data sources: GPS traces and map data. The details of the feature
extraction are introduced as below.

2.1 Feature Extraction from GPS Traces
A GPS trajectory is defined to be a sequence of records associated
with timestamps. Each record consists of location, bearing, and
speed returned by sensors. The location of a GPS record is usually
represented by the latitude and longitude pair. The bearing is the
clock-wise angle of the device’s moving directionwith respect to the
earth’s true north direction. As raw GPS traces are noisy and do not
contain the information of the road segments on which they were
travelling, we first perform the HMM-based map matching to find
the group of traces that are associated with each road segment [17].
Formally, let R = {r1, r2, ..., rn } denote a set of road segments, and
P i = {pi1,p

i
2, ...,p

i
m } denote the set of GPS points associated with

road segment ri wherepij = (lat ij , lon
i
j ,bearinд

i
j , speed

i
j ) is a 4-tuple

that contains the readings of latitude, longitude, bearing, and speed.
Based on P i we extract the following three types of features for each
road segment ri from location, bearing, and speed, respectively.

Location Encoding. For each location (lat ij , lon
i
j ) ∈ P i , we com-

pute the great circle distance between point (lat ij , lon
i
j ) and road

segment ri [26]. As the distance is continuous in space that is in-
feasible to be directly used as a feature, we map the distance of
100 meters into 50 bins with each bin representing an interval of
two meters [25]. Next we count the number of locations that fall
into each bin and normalize the histogram using the L1 norm. We
denote this feature as El . Intuitively, this feature is closely related
to the number of lanes of a road segment.

Bearing Encoding. For each bearing bearinдij ∈ P i , we compute
the angle distance between the moving direction of the vehicle
and the direction of the road segment ri . We quantize the degree
of 360 into 36 bins with each bin representing an interval of 10◦.
Similarly, we count the number of bearings that fall into each bin
and normalize the histogram using the L1 norm. We denote this
feature as Eb . Intuitively, this feature is closely related to the road
attribute of being one-way or two-way.

Speed Encoding. To encode the speed, we quantize the speed into
slots where each slot denotes an interval of 10 m/s. We generate
a histogram by counting the number of speeds that fall into each
slot and normalize the histogram using the L1 norm. We denote
this feature as Es , which is intuitively related to the speed limit and
average speed on each road segment.

2.2 Feature Extraction from Map Data
As aforementioned, the existing map data provides valuable contex-
tual information that helps to derive the missing road attributes. But
interestingly, the use of map data has not been investigated in previ-
ous methods. Figure 2 shows an example of the data representations
from OpenStreetMap, which provides a free and user-generated
map of the world. The map data is initially represented as key-
value pairs. For example, nodeid = 26782044 indicates the unique
node identifier, lat = 1.2957609 indicates the latitude of the node
location, and oneway = True indicates that this is a one-way road.
This key-value pair representation is difficult to be directly used as
features as the representation is inconsistent among different geo-
graphic objects with lots of missing, duplicate, or inaccurate values.
Fortunately, as shown in Figure 2, every map has its own rules for
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<bounds minlat="1.2862000" 

minlon="103.8479000" 

maxlat="1.2992000" 

maxlon="103.8603000"/> <node 

id="26782044" visible="true" 

version="6" changeset="45065922" 

timestamp="2017-01-11T01:01:38Z" 

user="TheNodeWarrior" 

uid="4759993" lat="1.2957609" 

lon="103.8604265"/> 

…

Motorway

Main road

Track

Bridleway

Cycleway

Footway

Railway

Subway

Map Key

Figure 2: An example of the key-value pairs and the map
visualization on OpenStreetMap.

the visualization of the geographic objects including buildings and
highways on a user interface. The different types and attributes of
the objects are mostly differentiated based on color and line style.
We thus propose to crop an image centered at each road segment
from the map tiles. This image is considered as a visual feature,
denoted as Ev , that captures the contextual information around a
road for missing road attribute detection.

In addition to the aforementioned ability of handling the data
inconsistency among the geographic objects from a single digital
map, our proposed method can also easily integrate the information
collected frommultiple map sources. As the geographic objects (e.g.,
roads) in different digital maps are usually identified by different
IDs, it is challenging and time-consuming to align the information
retrieved from different map sources. Graph-based algorithms [8]
can be adopted to match the road networks, but the effectiveness
of such algorithms can be easily affected by missing or inaccurate
data from any of the digital maps. When dealing with multiple
maps, our proposed method extracts images at road centers without
actually aligning the geographic objects from different maps. We
leave the job to each map to convert the raw key-value pairs into a
three-channel RGB image, which is an intrinsic component for map
visualization on a web-based user interface. We take the benefits of
it by using the multiple images extracted from different maps as an
additional visual input for road attribute detection. Convolutional
Neural Networks (CNNs) will be adopted to extract features from
the images. Small shift and misalignment in location among the
images extracted from different map sources can be considered as
data augmentation, which will have little (or even good) impacts
on the training of the classifier.

It is also worth mentioning that instead of using a single image
to represent the map data, it is also possible to generate a sepa-
rate channel for each type of the geographic objects such as roads,
buildings, rivers, etc. For example, Spruyt proposed to generate a
12-channel tensor from the map data to measure the semantic simi-
larity between locations [20]. The advantage of using multi-channel
tensor is that it reduces the information loss when converting map
data into image tiles, but at the same time it increases the model
complexity caused by the high dimensional input. We start with
using a single RGB image as the feature extracted from the map
in this work, and leave the investigation of multi-channel tensor
representations on road attribute detection in the future.
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(a) Sub-network for GPS traces processing.
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(b) Sub-network for map data processing.

Figure 3: Feature embedding and attention estimation for
features extracted from GPS traces and map data.

3 ROAD ATTRIBUTE DETECTION VIA
MULTI-TASK LEARNING

Previous methods process each of the road attributes separately.
However, road attributes can be closely related to each other. For
example, wide roads with more lanes can have a higher speed limit
than narrow roads. Moreover, the availability of the ground-truth
labels for different road attributes vary significantly in the map data.
As aforementioned, while most of the roads are annotated with the
one-way or two-way tags, only 23% of the roads are annotated with
the speed limit. By learningmultiple road attributes together, we are
able to build a more diverse training dataset where the samples are
only required to have (at least) one of the target road attribute labels.
We therefore propose a multi-task learning framework [5, 14, 29]
to address the issues of existing methods. The framework consists
of the three components, namely the feature embedding layers, the
attention-based feature fusion, and the task-specific classification
layers.

3.1 Feature Embedding Layers
Multi-task learning has been shown to be effective in a variety
of application by jointly analysing multiple tasks that are related
to each other [12, 29]. In our framework, we adopt shared weight
feature embedding layers to learn common patterns in the feature
space among multiple tasks. Figure 3 illustrates the sub-networks
for feature embedding and attention estimation. For features ex-
tracted from GPS traces, we process the initial embeddings El , Eb ,
and Es by two fully-connected layers with 32 hidden units followed
by the ReLU activation. For the image tiles extracted from the map,
we first process the raw images Ev by a 2D CNN with three convo-
lutional layers. We adopt a kernel size of 3 and set the number of
filters to 32, 64, and 128, respectively. We apply 3 × 3 max pooling
after each convolutional layer and pass the output of the CNN to
two fully-connected layers with 32 hidden units followed by the
ReLU activation. To reduce overfitting, we add a dropout layer after
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each fully-connected layer and set the drop rate to 0.3. The output
feature vectors of the embedding layers, denoted as hl , hb , hs , and
hv , will be fused based on task-specific attention scores and anal-
ysed by task-specific classifiers, the details of which are introduced
as below.

3.2 Attention-based Feature Fusion Layers
We have investigated simple feature fusion techniques such as con-
catenation [18, 27] for the joint detection of multiple road attributes.
However, such methods did not work well in this problem as the
importance of the features extracted from different sensors vary
significantly among different tasks. For example, bearing is closely
related to one- or two-way detection, but is less correlated to the
number of road-lanes. We thus propose to first estimate the impor-
tance of each feature in different tasks, and then fuse the features
based on their importance rather than simply concatenating them
together [16]. As shown in Figure 3, we estimate the feature im-
portance based on the one-hot representation that indicates the
feature type. Let I l = [1, 0, 0, 0], Ib = [0, 1, 0, 0], I s = [0, 0, 1, 0],
and Iv = [0, 0, 0, 1] denote the one-hot indicators for the four
types of features, respectively. We process the indicators by a fully-
connected layer and the Sigmoid activation to generate task-specific
feature attention scores. The number of hidden units in the fully-
connected layer equals to the number of target tasks. We adopt the
Sigmoid activation to ensure the attention scores to be in the range
of [0, 1]. Let α lk , α

b
k , α

s
k , and α

v
k represent the attention scores (im-

portance) of features El , Eb , Es , and Ev in task k . The multimodal
features are fused as,

hk = α lk · hl ++αbk · hb ++αsk · hs ++αvk · hv (1)

where a ++b represents the concatenation of two vectors. Though
the shared-weight embedding layers generate shared global feature
embeddings among different tasks, we are still able to learn task-
specific fused representations hk based on task-specific attention
scores. This strategy has been shown to be more effective than
feature concatenation with equal weights where the same fused
representation is generated among different tasks.

3.3 Task-specific Classification Layers
For each task k , we make predictions based on the fused feature hk
by passing it to two fully-connected layers with 16 and 8 hidden
units followed by the ReLU activation, and one output layer. To re-
duce overfitting, we add a dropout layer after each fully-connected
layer and set the drop rate to 0.3. We model the detection of each
road attribute as a multi-class classification problem and adopt the
category cross entropy as the loss function. Let Lk denote the loss
for task k , the final loss is defined to be,

L =
∑
k

βk · Lk (2)

where βk is in the range of [0, 1], representing the weight of the
loss for task k . We optimize the overall framework using the Adam
optimizer with batch size set to 1024. The learning rate was set to
0.001.

4 EXPERIMENTS
We conducted experiments in three different areas in Singapore.
The map data in these areas were retrieved from OpenStreetMap
using a python library named OSMnx [4]. We target at three road
attributes, namely one-way/two-way road, number of lanes, and
speed limit, and derive the ground-truth labels from OSM data.
We remove the road segments without ground-truth labels and
divide the remaining into 80%-20% splits for training and testing.
The number of training and testing samples in each task (i.e., road
attribute) is illustrated in Table 1. As can be seen, only bout 68%
and 23% of the roads are labeled with road-lane numbers and speed
limit, which again indicates the importance of automatic algorithms
on missing road attribute detection. For feature extraction, we use
the GPS trajectories of in-transit Grab drivers in Singapore [11]
and the map tiles returned by the Map Tile API [10].

We compare the following methods and report the classification
accuracy in Table 2.

• DecTree [22]: Design a decision tree for each road attribute
separately based on manually crafted GPS features.

• SinFea and SinFea-M: Train a neural network for each road
attribute separately based on a single feature only. SinFea uses
the most relevant feature extracted from GPS traces, and SinFea-
M uses the image extracted from map data.

• ConFus: Train a neural network for each road attribute sepa-
rately based on multiple GPS features fused by simple concate-
nation.

• AttFus: Train a neural network for each road attribute sepa-
rately based on multiple GPS features fused by task-specific
attention scores.

• AttMTL: To model the relations between the road attributes,
we presented a multi-task learning framework to jointly detect
multiple road attributes based on GPS features fused by attention
scores.

• AttMTL-M: To model the relations between road attributes and
contextual information in existing maps, we cropped an image
at each road center and fused it with features extracted from
GPS traces in our proposed multi-task learning framework with
attention-based feature fusion.

The DecTree method compared the heading of GPS points and
the heading of the road, and clustered the points into three cate-
gories: “similar”, “opposite”, and “outliers”. They adopted a threshold
of 20◦ for the point clustering, removed the outliers, and computed
the percentage of the number of points in the “similar” cluster. A
road is considered to be one-way if the percentage is larger than
0.9. Though this method tried to remove outliers caused by intrin-
sic sensor noise, its performance can be significantly diminished
by an improper threshold setting and inaccurate map matching
noise. Moreover, this method failed to provide a solution for the
number of lanes detection. The speed limit decision tree was also
performed poorly on our dataset possibly due to the difference
between countries and geographic regions.

The SinFea method trained a classifier based on a single, most
relevant GPS feature for each task, i.e., bearing for one/two way
detection, location for number of lanes detection, and speed for
speed limit detection. The SinFea-M method trained the classifiers
using the image tiles extracted frommap data. The results show that
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Table 1: Numbers of samples in the training/testing datasets for the three road attributes.

Dataset One/Two Way No. of Lanes Speed Limit
Area 1 1557/390 991/250 405/103
Area 2 2146/537 1501/379 389/101
Area 3 1205/302 848/217 328/84

Areas 1 & 2 & 3 4908/1229 3340/846 1122/288

Table 2: Classification accuracy comparison on road attribute detection of one/two way, number of lanes, and speed limit.

(a) Area 1

Method One/Two Way No. of Lanes Speed Limit
DecTree 0.8692 - -
SinFea 0.8846 0.4240 0.6506

SinFea-M 0.7205 0.4040 0.7864
ConFus 0.8897 0.4280 0.6796
AttFus 0.9026 0.4520 0.6893
AttMTL 0.9051 0.4640 0.7476

AttMTL-M 0.9154 0.5440 0.9029

(b) Area 2

Method One/Two Way No. of Lanes Speed Limit
DecTree 0.8305 - -
SinFea 0.8473 0.4987 0.7228

SinFea-M 0.7505 0.4802 0.8317
ConFus 0.8641 0.6332 0.7723
AttFus 0.8752 0.6332 0.7822
AttMTL 0.8827 0.6544 0.8218

AttMTL-M 0.9032 0.7177 0.8911

(c) Area 3

Method One/Two Way No. of Lanes Speed Limit
DecTree 0.8940 - -
SinFea 0.9139 0.5069 0.7143

SinFea-M 0.7483 0.4793 0.7976
ConFus 0.9073 0.5346 0.7381
AttFus 0.9272 0.5622 0.7619
AttMTL 0.9205 0.5899 0.7738

AttMTL-M 0.9205 0.6728 0.8690

(d) Areas 1 & 2 & 3

Method One/Two Way No. of Lanes Speed Limit
DecTree 0.8584 - -
SinFea 0.8804 0.5319 0.6285

SinFea-M 0.7469 0.4965 0.8160
ConFus 0.9064 0.5887 0.7604
AttFus 0.9089 0.6064 0.7812
AttMTL 0.9105 0.6052 0.7812
AttMIL-M 0.9211 0.6702 0.9028

the former is more effective for one/two way and number of lanes
detection, while the latter is more effective for speed limit detection.
This is related to the default map visualization for incomplete map
data with missing key-value pairs. Next, we compare methods
ConFus and AttFus, which fused the multiple features extracted
from GPS traces based on concatenation and attention, respectively.
Method AttFus outperformed method ConFus by 3% and 2% on the
whole dataset in terms of the number of lanes detection and the
speed limit detection, respectively. The results indicate that AttFus
generally performs more effectively than ConFus, as AttFus assigns
different attention scores to different GPS features when generating
a fused representation.

Finally, method AttMTL improved method AttFus by applying
multi-task learning. The results reported in Table 2 were obtained
by assigning equal weights to the three tasks. On one hand, the
shared-weight embedding layers in AttMTL learn global low-level
features that are shared among multiple tasks. On the other hand,
the attention-based fusion layers in AttMTL combine shared low-
level features into task-specific fused representations for the pre-
diction of each task. This strategy has been shown to be effective,
especially on small to moderate datasets, with the following two
advantages. First, it indicates that connections exist among different
road attributes, thus improved classification results can be obtained
by modeling the connections by multi-task learning. Second, it
increases both the quantity and the diversity of training samples
(especially for speed limit) as samples that are labeled with any one

of the road attributes can be utilized to learn the shared low-level
features among tasks. Finally, we present the AttMTL-M approach,
which jointly analysed the features extracted from GPS traces and
map data. As can be seen, the proposed method obtained the best
road attribute detection accuracy among the seven methods. It out-
performed the second best method AttMTL by 1.2%, 10.7%, and
15.6% for one/two way detection, number of lanes detection, and
speed limit detection, respectively. The results thus demonstrate
the effectiveness of our proposed approach.

Tables 3 and 4 report the per-class precision, recall, and F1 mea-
sure of methods AttMTL and AttMTL-M on number of lanes de-
tection and speed limit detection. The results of ± one class are
computed as follows. For a class c (e.g., speed limit of 50 km/h), we
retrieve all the samples with the predicted labels to be either c or
the neighboring classes of c (e.g., speed limit of 40 km/h and 60
km/h). We compute the recall of the retrieved samples for class c
and report the results in column ± one class. This metric measures
the “distance” between the prediction and the ground-truth label.
For example, a high ± one class score for speed limit detection
means that the predicted speed limit is close to the true speed limit
of the road. Under such circumstances, the predicted road attributes
can still be beneficial for downstream applications (e.g., routing)
without introducing significant errors. The number of test samples
for the five classes in the road-lane detection is 132, 408, 169, 91,
and 37, while that for the six classes in the speed limit detection is
20, 88, 151, 7, 17, and 5, respectively. Due to the problem of class
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Table 3: Per-class precision, recall, and F1 measure comparison on the road attribute of number of lanes.

Class AttMTL AttMTL-M
precision recall F1 ± one class precision recall F1 ± one class

1 0.7030 0.5379 0.6094 0.9697 0.6620 0.7121 0.6861 0.9470
2 0.7159 0.7966 0.7541 1.000 0.8430 0.7500 0.7938 0.9534
3 0.3986 0.6864 0.5043 0.9941 0.5775 0.6391 0.6067 0.9645
4 - - - 0.7912 0.3831 0.6484 0.4816 0.8791
5 - - - - - - - 0.8919

Table 4: Per-class precision, recall, and F1 measure comparison on the road attribute of speed limit.

Class AttMTL AttMTL-M
precision recall F1 ± one class precision recall F1 ± one class

40 0.6316 0.6000 0.6154 1.0000 0.8235 0.7000 0.7568 1.0000
50 0.7284 0.6705 0.6982 1.0000 0.8587 0.8977 0.8778 1.0000
60 0.8354 0.9073 0.8698 1.0000 0.9351 0.9536 0.9443 1.0000
70 - - - 0.8571 1.0000 0.7143 0.8333 1.0000
80 0.7391 1.0000 0.8500 1.0000 0.8889 0.9412 0.9143 0.9412
90 - - - 0.6000 1.0000 0.4000 0.5714 0.6000

imbalance, it is more challenging to detect samples from the rare
classes. We use “−” in the tables to represent that no instances from
that class were detected and returned by the algorithm.

Generally speaking, method AttMTL-M is more robust as it out-
performed method AttMTL in terms of the F1 measure in all classes.
One advantage of AttMTL-M is that it performed more effectively
in detecting samples from rare classes. Method AttMTL, on the
other hand, tended to label samples as one of the major classes,
resulting in obtaining relatively high recall and low precision com-
pared to AttMTL-M in those classes. In terms of the ± one class
measure, both methods obtained high recalls among the classes
especially method AttMTL-M where most of the recalls it obtained
were greater than 90%. It indicates that in most of the cases, the pre-
dicted class returned by our proposed method is either the true class
or the neighbors of the true class. This measure can be an important
indicator of the usability of the predicted road attributes in down-
stream applications, as it measures the level of errors introduced
when annotating roads with the detected attributes.

5 RELATEDWORK
A significant number of map inference algorithms have been pro-
posed that aim at generating routable road maps from vehicle GPS
traces [1, 15, 23]. Despite the efforts, most of the work concentrate
on deriving the road network geometry [28] and topology [6, 19]
while neglecting the detection of road attributes. Road attributes
such as number of lanes and speed limit are of great importance
as they can have a significant impact on routing decisions. As one
of the pioneer work, Chen and Krumm presented a probabilistic
model to derive the number of traffic lanes from GPS traces [7].
They proposed to use a Gaussian mixture model to model the distri-
bution of GPS traces across multiple traffic lanes. Li et al. adopted
the Support Vector Machine as the classifier to detect the road class
and road name from a combination of movement trajectories and
geotagged social media data [13]. Van et al. targeted at multiple
road attributes, but they modeled each road attribute individually

with a decision tree built on different features extracted from GPS
traces [22]. Techniques that are tailored for a specific road attribute
such as road type [3], road boundary [24], and lane detection [2]
have also been proposed. However, none of the methods model the
connections among multiple road attributes nor did they investi-
gate the use of existing map data in the detection of missing road
attributes.

6 CONCLUSION AND FUTUREWORK
Conventional road attribute detection methods extract intuitive
hand-crafted features from GPS traces and model each road at-
tribute separately. Thus to the best of our knowledge, we present
the first multi-task learning basedmodel for road attribute detection
via joint analysis of GPS traces and map data. Our proposed frame-
work models the relations among the road attributes via multi-task
learning, which consists of three components: the feature embed-
ding layers, the attention-based feature fusion, and the task-specific
classification layers. The first component learns common patterns
in the feature space among multiple tasks, which are next fused
by the task-specific importance scores of the features computed in
the second component. The third component predicts the attribute
labels via task-specific classification layers, the losses of which are
jointly minimized. Moreover, we extract contextual features from
map data that contain the information of the geographic objects
in the vicinity of a road, to facilitate the detection of missing road
attributes. In the future, we plan to leverage a multi-channel tensor
instead of a three-channel RGB image to model the contextual fea-
tures extracted from the map. We can generate a separate channel
for each type of the geographic objects, to reduce the information
loss during the feature extraction.

ACKNOWLEDGMENT
This work was funded by the Grab-NUS AI Lab, a joint collaboration
between GrabTaxi Holdings Pte. Ltd. and National University of
Singapore.



A Multi-task Learning Framework for Road Attribute Updating via Joint Analysis of Map Data and GPS Traces WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. 2015.

A Comparison and Evaluation of Map Construction Algorithms using Vehicle
tracking data. GeoInformatica 19, 3 (2015), 601–632.

[2] Heba Aly, Anas Basalamah, and Moustafa Youssef. 2016. Robust and Ubiquitous
Smartphone-based Lane Detection. Pervasive and Mobile Computing 26 (2016),
35–56.

[3] Heba Aly and Moustafa Youssef. 2015. semMatch: Road Semantics-based Ac-
curate Map Matching for Challenging Positioning Data. In ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 5:1–5:10.

[4] Geoff Boeing. 2017. OSMnx: New Methods for Acquiring, Constructing, Ana-
lyzing, and Visualizing Complex Street Networks. Computers, Environment and
Urban Systems (2017), 126–139.

[5] Rich Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (1997), 41–75.
[6] Chen Chen, Cewu Lu, Qixing Huang, Qiang Yang, Dimitrios Gunopulos, and

Leonidas Guibas. 2016. City-Scale Map Creation and Updating Using GPS Col-
lections. In International Conference on Knowledge Discovery and Data Mining.
1465–1474.

[7] Yihua Chen and John Krumm. 2010. Probabilistic Modeling of Traffic Lanes
from GPS Traces. In ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. 81–88.

[8] S. Feizi, G. Quon, M. Mendoza, M. Medard, M. Kellis, and A. Jadbabaie. 2019. Spec-
tral Alignment of Graphs. IEEE Transactions on Network Science and Engineering
(2019).

[9] M. Haklay and P. Weber. 2008. OpenStreetMap: User-Generated Street Maps.
IEEE Pervasive Computing (2008), 12–18.

[10] HERE Map. [n.d.]. https://developer.here.com/documentation/map-
tile/topics/quick-start-map-tile.html/.

[11] Xiaocheng Huang, Yifang Yin, Simon Lim, Guanfeng Wang, Bo Hu, Jagannadan
Varadarajan, Shaolin Zheng, Ajay Bulusu, and Roger Zimmermann. 2019. Grab-
Posisi: An Extensive Real-Life GPS Trajectory Dataset in Southeast Asia. In ACM
SIGSPATIAL Workshop on Prediction of Human Mobility.

[12] Keisuke Imoto, Masahiro Niitsuma, Ryosuke Yamanishi, and Yoichi Yamashita.
2019. Joint Analysis of Acoustic Event and Scene Based on Multitask Learning.
arXiv preprint arXiv:1904.12146 (2019).

[13] Jun Li, Qiming Qin, Jiawei Han, Lu-An Tang, and Kin Hou Lei. 2015. Mining
Trajectory Data and Geotagged Data in Social Media for Road Map Inference.
Transactions in GIS 19, 1 (2015), 1–18.

[14] Shikun Liu, Edward Johns, and Andrew J Davison. 2019. End-to-end Multi-task
Learning with Attention. In IEEE Conference on Computer Vision and Pattern
Recognition. 1871–1880.

[15] Xuemei Liu, James Biagioni, Jakob Eriksson, Yin Wang, George Forman, and
Yanmin Zhu. 2012. Mining Large-scale, Sparse GPS Traces for Map Inference:

Comparison of Approaches. In ACM SIGKDD. 669–677.
[16] Xianglai Meng, Biao Leng, and Guanglu Song. 2017. A Multi-level Weighted

Representation for Person Re-identification. In Artificial Neural Networks and
Machine Learning, Alessandra Lintas, Stefano Rovetta, Paul F.M.J. Verschure, and
Alessandro E.P. Villa (Eds.). 80–88.

[17] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through
Noise and Sparseness. In ACM SIGSPATIAL. 336–343.

[18] Andrew Owens and Alexei A Efros. 2018. Audio-visual Scene Analysis with Self-
supervised Multisensory Features. In European Conference on Computer Vision.
631–648.

[19] Zhangqing Shan, Hao Wu, Weiwei Sun, and Baihua Zheng. 2015. COBWEB: A
Robust Map Update System Using GPS Trajectories. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing. 927–937.

[20] Vincent Spruyt. 2018. Loc2Vec: Learning Location Embeddings with Triplet-loss
Networks. https://www.sentiance.com/2018/05/03/loc2vec-learning-location-
embeddings-w-triplet-loss-networks/.

[21] KBA Van Winden. 2014. Automatically Deriving and Updating attribute road
data from movement trajectories. (2014).

[22] Karl Van Winden, Filip Biljecki, and Stefan Van der Spek. 2016. Automatic
Update of Road Attributes by Mining GPS Tracks. Transactions in GIS 20, 5 (2016),
664–683.

[23] Jing Wang, Xiaoping Rui, Xianfeng Song, Xiangshuang Tan, Chaoliang Wang,
and Venkatesh Raghavan. 2015. A Novel Approach for Generating Routable Road
Maps from Vehicle GPS Traces. International Journal of Geographical Information
Science 29, 1 (2015), 69–91.

[24] Wei Yang, Tinghua Ai, andWei Lu. 2018. AMethod for Extracting Road Boundary
Information from Crowdsourcing Vehicle GPS Trajectories. Sensors 18, 4 (2018),
1261.

[25] Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. SERM: A Recur-
rent Model for Next Location Prediction in Semantic Trajectories. In ACM on
Conference on Information and Knowledge Management. 2411–2414.

[26] Yifang Yin, Rajiv Ratn Shah, and Roger Zimmermann. 2016. A General Feature-
based Map Matching Framework with Trajectory Simplification. In ACM SIGSPA-
TIAL International Workshop on GeoStreaming. 7:1–7:10.

[27] Yifang Yin, Rajiv Ratn Shah, and Roger Zimmermann. 2018. Learning and Fusing
Multimodal Deep Features for Acoustic Scene Categorization. In ACM Interna-
tional Conference on Multimedia. 1892–1900.

[28] Lijuan Zhang, Frank Thiemann, and Monika Sester. 2010. Integration of GPS
Traces with Road Map. In Proceedings of the Third International Workshop on
Computational Transportation Science. 17–22.

[29] Yu Zhang, Ying Wei, and Qiang Yang. 2018. Learning to Multitask. In Advances
in Neural Information Processing Systems. 5771–5782.


	Abstract
	1 Introduction
	2 Road Feature Extraction
	2.1 Feature Extraction from GPS Traces
	2.2 Feature Extraction from Map Data

	3 Road Attribute Detection via Multi-task Learning
	3.1 Feature Embedding Layers
	3.2 Attention-based Feature Fusion Layers
	3.3 Task-specific Classification Layers

	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

