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With the increasing availability of GPS-equipped mobile devices, location-based services have become an

integral part of people’s everyday life. Among one of the initial steps of positioning data management, map

matching aims to reduce the uncertainty in a trajectory by matching the GPS points to the road network on

a digital map. Most existing work has focused on estimating the likelihood of a candidate route based on the

GPS observations, while neglecting to model the probability of a route choice from the perspective of drivers.

In this work, we propose a novel feature-based map matching algorithm that estimates the cost of a candidate

route based on both GPS observations and human factors. To take human factors into consideration is highly

important especially when dealing with low sampling rate data where most of the movement details are lost.

Additionally, we simultaneously analyze a subsequence of coherent GPS points by utilizing a new segment-

based probabilistic map matching strategy, which is less susceptible to the noisiness of the positioning data.

We have evaluated both the offline and the online versions of our proposed approach on a public large-scale

GPS dataset, which consists of 100 trajectories distributed all over the world. The experimental results show

that our method is robust to sparse data with large sampling intervals (e.g., 60 s ∼ 300 s) and challenging track

features (e.g., u-turns and loops).Measurements including mapmatching accuracy and system efficiency have

been thoroughly evaluated and discussed. Compared with two state-of-the-art map matching algorithms,

our method substantially reduces the route mismatch error by 6.4% ∼ 32.3% (either offline or online with the

window size set to 360 s) with a slight increase in terms of the processing time. The experimental results show

that our proposed method obtains the state-of-the-art map matching results in all the different combinations

of sampling rates and challenging features.
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1 INTRODUCTION

Accurate map matching has been a fundamental but challenging problem that has drawn great
research attention in recent years. Given a vehicle track consisting of a sequence of GPS points,
map matching algorithms aim to automatically determine the correct route where the driver has
traveled on a digital map. The correction of the raw positioning data has been important for
many downstream applications such as navigation, tracking systems, and semantic trajectory de-
tection [8, 11, 12, 25, 35, 37]. Recently, an increasing number of statistics-based map matching
algorithms have been proposed to deal with the challenging GPS trajectories that pose difficulties
in traditional geometry-based or topology-based methods, e.g., data noise and sparsity. Among the
advanced statistics-based algorithms, the HiddenMarkovModel (HMM) is one of themost popular
and widely used technique that models the road emission and transition probabilities based on the
measurement noise and the road network layout [21]. It has been reported that the HMM-based
map matching is highly effective when dealing with trajectories where the GPS sampling inter-
val is less than 30 seconds. However, real positioning data are sometimes collected at a very low
sampling rate, e.g., a sample point every five minutes [38], due to the high energy consumption of
GPS, WiFi, and inertial sensors on mobile devices [18]. A growing number of applications, includ-
ing energy-efficient localization and cellular provider side localization, depend on only sparse and
coarse-grained positioning data [3], posing great difficulties in the development of map matching
algorithms.
To reduce the uncertainty in low sampling rate trajectories, hybrid methods have been proposed

to estimate the transition probability between two road segments based on a fusion of multiple
metrics [3, 4, 9]. For example, Aly and Youssef proposed to detect road semantics with multiple
sensors and estimate the transition probability based on both the orientation difference and the
skipped road semantics [3]. However, such algorithms mostly assume that the driver has traveled
on the shortest path between two road segments which is not always true especially when dealing
with low sampling rate data. To solve the above problem, Zheng et al. proposed to infer the pos-
sible routes based on the travel patterns derived from historical data [40]. Osogami and Raymond
considered both the number of turns and the travel distance in the cost modeling of a candidate
path [22]. However, the performance of such algorithms can be limited due to the requirement
of sufficient historical GPS trajectories in the learning phase. Moreover, the original HMM-based
mapmatching algorithm and its extensions mostly retrieve candidate road segments for every GPS
point [3, 21, 22], resulting in decreasing effectiveness for trajectories with the existence of large
sensor noise.
We therefore present a novel feature-based framework for accuratemapmatching of challenging

GPS trajectories. We first detect key GPS points to segment a trajectory into a list of subsequences.
To reduce the method’s sensitivity to data noise, we simultaneously consider all the GPS points in
one segment to determine the most likely route taken by a user. Figure 1 illustrates a trajectory
segment consisting of three GPS points, and two candidate matching routes. The likelihood of a
candidate match is computed based on the corresponding cost modeled with a list of pre-defined
features. More specifically, we model the cost of a route choice based on two types of features: (1)
trajectory-related features to estimate the cost of a route from the perspective of GPS observations,
and (2) road-related features to model the behavior cost of a route choice from the perspective of
users. We next compute the likelihood of a candidate path based on its cost and determine the
correct match as the path with the highest likelihood. From a global perspective, we retrieve can-
didate road segments for each key GPS point, search for a local optimal path between any two
neighboring candidate road segments, and compute the likelihood of a global candidate path by
multiplying the likelihood values of the local optimal paths it contains. This problem can be solved
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Fig. 1. Route likelihood estimation based on cost modeling with pre-defined features.

efficiently by dynamic programming techniques. Our proposed method is initially offline, but can
be easily extended into an online version by dividing the trajectory into fixed-sized sequences and
process each segment individually. We have evaluated our proposed approach in terms of both
accuracy and efficiency by comparing it with two state-of-the-art map matching algorithms. Ex-
periments are conducted on real-world GPS data sampled with different intervals ranging from
one minute to five minutes. We report the route mismatch fraction, map matching precision, re-
call, F1 score, offline processing time, and online output latency as the evaluation measures and
the experimental results show that our method is competitively efficient, and outperforms its com-
petitors by a mismatch error reduction rate of 6.4% ∼ 32.3% on average. With the availablity of
richer data sources, the map matching results can be further improved. We additionally discuss
the utilization and integration of three important types of supplementary data (i.e., GPS accuracy
measures, smartphone internal sensors and historical GPS trajectories) in our proposed system.
Here we summarize the contributions of this paper in the following four aspects:

• We present a novel feature-based map matching technique that models the cost of a candidate
path with both trajectory-related features (e.g., the distance to the closest GPS point) and road
characteristics (e.g., length and transitions).

• We consider more than one GPS point at a time by utilizing a new segment-based probabilistic
map matching strategy that searches for shortest path between candidate roads of only the key
points detected by trajectory simplification techniques.

• We perform extensive experiments in terms of accuracy and efficiency on a large-scale real
dataset consisting of trajectories with features (e.g., u-turns and loops) that pose difficulties to
map matching algorithms.

• We evaluate the proposed technique with varying sampling intervals (1 min ∼ 5 min). The
experimental results show that our method works consistently well and outperforms the state-
of-the-art map matching algorithms.

The rest of the paper is organized as follows. We first report the important related work in
Section 2 and present the system overview in Section 3. Next we introduce the technical details
of the proposed feature-based map matching framework and discuss the integration of potential
supplementary data sources in Section 4. Finally, we evaluate the effectiveness of our proposed
approach by comparing with the state-of-the-art map matching techniques in Section 5. Section 6
concludes and suggests future work.
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2 RELATED WORK

Over the past decades, extensive research has been conducted on matching GPS points on a digital
map. With simple road network information such as the locations and the shape of the roads, early
map matching techniques can be generally classified into two categories: geometry-based match-
ing and topology-based analysis. Geometry-based algorithms match a single GPS point [34] or a
segment of GPS trajectories [6, 41] to the closest road arc based on geometric calculations. How-
ever, without considering the constraints induced by a map topology, these methods suffer from
one significant drawback of being sensitive to measurement errors. On the other hand, topology-
based map matching algorithms utilize not only the shapes, but also topological information such
as connectivity and contiguity of the road network [4, 10]. Quddus et al. reported improved results
by leveraging vehicle information of heading and speed in the topological analysis [24]. However,
such algorithms are still vulnerable to sensor noise and unsuitable for highly erroneous and sparse
positioning data [3].
To pursue improved matching accuracy, probabilistic map matching algorithms have been pro-

posed in order to take advantage of statistical models such as Kalman Filter [23], particle fil-
ters [11, 16], and HMM [7, 9, 21]. Wang et al. proposed a novel statistics-based online map match-
ing algorithm called Eddy with a solid error- and delay-bound analysis [33]. To work with mobile
devices, Liu et al. presented a novel technique termed Passby which maintains high matching accu-
racies while workingwith themost simplified road network [17]. Situations that pose difficulties in
mapmatching, e.g., dealing with low sampling rate GPS tracks [20, 39] andmatching to incomplete
map data [31], have also been studied recently but still remain challenging problems. Newson and
Krumm proposed an elegant HMM-based map matching algorithm for relatively noisy and sparse
GPS trajectories [21]. However, experiments show that the accuracy decreases significantly when
the sampling period grows larger than 30 seconds. Zheng et al. proposed a history-based route
inference system which derives the travel pattern from historical data to reduce the uncertainty
of GPS trajectories [40]. However, the inference process requires a large quantity of historical
trajectories with good coverage and high density, which greatly limits the applicability of such
algorithms. On the other hand, trajectory segmentation algorithms have been proposed for spatio-
temporal data management [5, 26, 27]. Buchin et al.presented an efficient trajectory segmentation
algorithm based on different spatiotemporal criteria including location, heading, speed, velocity,
curvature, shape, etc. [5]. Song et al.proposed a novel road-network-based trajectory compression
algorithm that outperformed existing approaches in terms of saving storage cost with bounded er-
rors [27]. However, only a few efforts have been made on incorporating trajectory simplification
algorithms to improve map matching results [15].
Recently, a number of map matching algorithms started to utilize other sensors equipped on

smartphones such as WiFi and cellular fingerprinting [29, 30]. Aly and Youssef proposed to detect
road semantics (e.g., speed bumps and tunnels) by leveraging smartphone’s inertial sensors and
presented an improved HMM with a semantics-enriched digital map [3]. Furthermore, one inter-
esting direction that emerged recently is to perform map matching with the assistance of driver
behavior analysis. Drivers attempt to reach some destination while optimizing some trade-off be-
tween time, safety, and other factors which can be modeled by a list of path features such as road
type and speed limit [42]. Osogami and Raymond proposed to integrate the number of turns in the
transition probability calculation of a HMM in order to favor a more “natural” path in the decision
making process [22]. Promising results have been reported on GPS points taken during a single trip
in Seattle. However, the generality of such methods remains unclear without conducting extensive
experimental studies on large-scale positioning data.
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3 SYSTEM OVERVIEW

As an overview, we first provide formal definitions of the map matching problem in our proposed
feature-based framework. Next, we briefly discuss the functionality of each system component
and introduce the technical details in the next section.

3.1 Problem Statement

Given a GPS trajectory and a digital map, our goal is to find the most likely route that has been
traveled by the user. Here we model a map as a simple directed graph where the nodes have
assigned geo-coordinates on Earth and the edges represent linear road segments between two
nodes:
Definition 1 (Road Segment): A road segment e is a directed edge that is associated with an id

e .eid , a length value e .l , a starting point e .startp, and an ending point e .endp. It represents a linear
road segment between the two nodes e .startp and e .endp.
Definition 2 (Road Network): A road network is a directed graph G(V , E), where E is a set of

edges representing the road segments andV is the vertex set consisting of the starting and ending
points of the road segments.
Definition 3 (GPS Trajectory): A GPS trajectory is a sequence of GPS points T = {p1,p2, ...,pn}.

Each point pi is associated with a geo-coordinate < pi .lat ,pi .lon > and a timestamp pi .t .
To incorporate user behavior analysis, we also introduce the concept of action which describes

the user behavior of traveling from one road segment to another. Note that the two road segments
are required to be directly connected to form a legal action. The formal definition is given as below:
Definition 4 (Action): An action a is a directed edge that is associated with a starting road

segment a.start , an ending road segment a.end , the angle between the two road segments a.anдle ,
and the cost of taking this action a.cost . It models a turning action from a.start to a.end .
Definition 5 (Action Graph): An action graph is a directed graphGA = (E,A), where the vertices

E are the set of the road segments in G(V , E), and the edges A = {a1,a2, ...,am } are formed by the
actions of traveling between two directly connected road segments.
Definition 6 (Action Sequence): An action sequence AS is a path connecting two road segments

in the action graphGA(E,A). Let AS = {ã1, ã2, ...ãm̃ } where ãi ∈ A, then for each i in range [1,m̃),
we have ãi .end = ãi+1.start .

Definition 7 (Path): A path P is a sequence of connected road segments. Given an action se-
quence AS , the corresponding path can be recovered by concatenating the road vertices traversed
by AS .
Now we define the map matching problem as follows: Provided with a raw GPS trajectoryT and

a road network G(V , E), generate the action graphGA(E,A) and estimate the cost and probability
of taking each action in A. Find the most probable sequence of actions AS and recover the optimal
path P accordingly.

3.2 Architecture Overview

The architecture of the proposed feature-based map matching system is illustrated in Figure 2.
It consists of three major components: Road Candidate Preparation, Action Graph Generation and
Path Recovery.
Road Candidate Preparation: Given a raw GPS trajectory and the corresponding road net-

work information, this component retrieves possible candidate roads for a number of key GPS
points detected from the trajectory. The key points are obtained by trajectory simplification while
preserving the shape of the curve within a given tolerance [13, 19]. Trajectory simplification helps
remove noisy and stop points, so that enhanced map matching results can be obtained [15]. While
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Fig. 2. Overview of the proposed feature-based map matching system architecture

previous statistics-based methods mostly retrieve candidate roads for every GPS point, we alterna-
tively adopt a more effective segment-based map matching strategy that considers a subsequence
of points at a time in the probabilistic modeling. Moreover, we incorporate user behavior anal-
ysis in finding the local optimal path between the candidate roads of two neighboring key GPS
points, which significantly improves the mapmatching accuracy especially when dealing with low
sampling rate positioning data.
Action Graph Generation: This component generates the action graph GA = (E,A) where

the action sequence that matches the real route can be detected based on a simple shortest path
search between any two neighboring candidate roads. As illustrated in Figure 3, the nodes in the
action graph are formed by the road segments and the edges are formed by the actions A where
each element a represents a directed edge from node a.start to node a.end with the edge weight
a.cost . Please note that the cost here models not only the likelihood of taking one action given the
raw GPS observations, but also the trade-off made by users (drivers) among a list of factors such
as time, safety, and stress. More specifically, we model the cost of a user’s route choice behavior
based on a list of raod features. Two basic road features (length and transitions) that are available
from all digital maps are leveraged in this work. If provided with more semantic information such
as road type and speed limit, user behavior cost can be better modeled by advanced feature fusion
techniques [42]. Additionally, in areas where dense historical GPS trajectories are available, it is
also possible to automatically infer road semantics, e.g., road popularity, based on data-driven
approaches [40].
Path Recovery: Based on the action graph generated, this component computes the shortest

path and the corresponding cost between any two neighboring candidate road segments in the
retrieved candidate set. The local shortest paths are next concatenated at the starting and ending
road segments to form a set of global candidate paths for the whole input trajectory. Thereafter,
the probability of a global candidate path being the correct match is modeled based on the cost of
the local shortest paths it contains. Finally, the candidate path with the highest probability score
is returned as the predicted map matching result, which can be efficiently solved by a dynamic
programming technique.

4 FEATURE-BASED MAP MATCHING

In traditional map matching algorithms, the candidate path scoring mostly relies on the distance
modeling between the input GPS observations and the road network database based on spatial and
temporal constraints [20, 21]. In this work, we refer to the aforementioned aspect as trajectory-
related path features and further propose a general framework that enables effective feature fusion
with road characteristics in the decision making process. Our proposed map matching algorithm
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Fig. 3. The generated action graph where nodes are road segments and edges are actions.

can effectively reduce the uncertainty of low sampling rate GPS data with possibly challenging
patterns such as u-turns and loops. The technical details of each system component are introduced
as below.

4.1 Action Graph Generation

The Action Graph Generation is the core component of the proposed system. Recall that the action
graph is created based on the road network. The nodes in the graph are road segments and an
edge a describes the action of traveling from one road segment a.start to a neighboring road
segment a.end . The edge weight is set to a.cost . Next, we introduce how to extract path features
and estimate action costs based on an input trajectory segment s .

4.1.1 Path Feature Extraction. We extract two types of path features to estimate the traveling
cost, taking both the GPS observations and the human factors into consideration.

• Trajectory-related features: the distance between a road and a trajectory segment, which will
next be used to estimate the cost of a road segment given the GPS observations.

• Road-related features: the road characteristics such as length and transitions, which will next
be used to model the behavior cost of a route choice made by users.

Figure 4 illustrates the trajectory-related feature extraction with the input being a trajectory
segment consisting of four GPS points. Intuitively, the road segments that are farther from the
trajectory are less likely to be the correct match. Therefore, we formulate the distance between a
road segment e and a trajectory segment s as

dist(e, s) = min
p ∈s

dist(e,p) (1)

where p ∈ s denotes a GPS point p in trajectory segment s , and dist(e,p) represents the distance
between point p and road segment e , which is defined to be the great circle distance between point
p and the point on road segment e that is the closest to p. For example in Figure 4, dist(e, s) =
dist(e,p4) as point p4 is the closest GPS measurement to road segment e .

Figure 5 illustrates the extraction of the two road-related features that are leveraged in this work
to model a user’s behavior cost. Due to concerns about the time, people usually favor shorter paths
over longer ones. Moreover, the type and the number of road transitions also play an important
role in users’ route choices [22]. For example in Figure 5, even though Route 2 is the shorter path
between the two GPS points, it is more likely that people would choose Route 1 due to safety
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concerns as this path contains only one 90-degree-turn while the former path contains two. Based
on the above observations, we compute the length of a road segment and the transition angle
between any two connected road segments. Each length feature is associated with a road segment
e and denoted as e .l . Similarly, each transition angle is associated with an action a and denoted as
a.anдle . Next we discuss how to formulate the action cost based on the extracted features.

4.1.2 Action Cost Estimation. Considering that the probability of driver to turn on a road seg-
ment that is farther away from the GPS observations is small, we model the cost of an action a

based on the input trajectory segment s as

Ctr aj = min{dist(e, s),maxCtr aj} (2)

where e = a.end is the ending road segment of action a andmaxCtr aj is a threshold that limits the
maximum value of Ctr aj . We set the cost of the road segments that are far away from the input
trajectory segment to a constant valuemaxCtr aj . This is because that the trajectory segment s pro-
vides little information when the distance dist(e, s) grows much larger than the GPS accuracy, i.e.,
GPS observations are only effective for the cost estimation of the nearby road segments. Therefore,
we setmaxCtr aj = 100 meters in our experiments, which we consider to be reasonable according
to the GPS uncertainty.
Based on road-related features, we estimate Clen of action a as the length of the ending road

segment a.end in meters

Clen = e .l (3)

where e = a.end and e .l is the length attribute of road segment e . Thereafter, we model the cost of
a transition Cturn as proposed by Osogami and Raymond [22]

Cturn =





0 |a.anдle | < π/4
1 π/4 ≤ |a.anдle | < 3π/4
2 3π/4 ≤ |a.anдle | ≤ π

(4)

where a.anдle is the transition angle between the two road segments a.start and a.end . It is worth
mentioning that currently we do not distinguish between left and right turns, therefore we have
0 ≤ a.anдle ≤ π . Later in the experiments we will see, the setting of the relative weights of angles
shown in Eq. 4 works generally well on trajectories from different regions all over the world.
Moreover, it is also possible to fine-tune the weights using machine learning techniques with the
presence of large GPS data.
Finally, we fuse Ctr aj , Clen andCturn into the overall cost of an action as

C = Ctr aj · (Clen + ωCturn) (5)
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Fig. 6. An example to illustrate the proposed cost function.

where ω is a balancing factor between road length and transition angle. The intuition of Eq. 5 is
that, smallCtr aj values promote user actions of turning onto road segments that are closer to the
GPS observations, while small Clen and Cturn promote shorter and straighter routes which are
more likely to be chosen by users. We show an example in Figure 6 to illustrate the reason that
we use the product instead of the sum in the late fusion between the trajectory-related cost and
the road-related cost in Eq. 5. Figures 6(a) and 6(b) show two routes between the same source and
destination but consist of different numbers of road segments. Point p1 is a GPS observation and
we also plot the correspondingCtr aj (marked in dotted lines) in the two figures. If we perform the
late fusion as the sum of the trajectory-related cost and the road-related cost, the number of road
segments in the route will have a great impact on the sum ofCtr aj even when the shape of the route
remains approximately unchanged. Take Figure 6 as an example, the total trajectory-related cost
of Route 2 will be more than twice as that of Route 1, which can be an issue as intuitively the total
trajectory-related cost of Route 2 should only be slightly greater. To remove the impact caused by
the number of road segments in a route, we consider Ctr aj to be the weight of the corresponding
road segment, and adopt the product as our late fusion strategy. Thereafter, we compute costC for
every action a and set a.cost = C accordingly. Next we present a segment-based map matching
strategy that models the probability of a route choice based on the action cost.

4.2 Segment-based Probabilistic Modeling

Based on the action cost estimated using Eq. 5, we are able to retrieve the most likely action se-
quence that connects any two candidate road segments in the action graph by shortest path search.
Figure 7(a) shows a trajectory consisting of six GPS points with the feature of loop. The shortest-
path-search strategy based on our proposed cost estimation works well for relatively straight tra-
jectory segments such as {p1,p2,p3} or {p3,p4,p5,p6}. However, it is highly difficult to recover
the real path between p1 and p6 directly as Route 2 is more likely to be mistakenly retrieved due
to the small values of Clen and Cturn . To solve this problem, we propose a segment-based proba-
bilistic model by trajectory simplification. As illustrated in Figure 7(b), we first segment the input
trajectory and obtain a list of key GPS points (e.g., p1, p3, and p6). Next, we retrieve possible can-
didate road segments for each of the key GPS points, compute the shortest path between any two
neighboring candidates, and recover the real path by global optimization.
Moreover, trajectory simplification can help enhance map matching results for trajectories with

challenging features by removing noisy and stop points [15]. If vehicles get stuck in traffic jams or
stop at intersections, GPS points are most likely to be randomly distributed around the stop point

ACM Transactions on Spatial Algorithms and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:10 Yifang Yin, Rajiv Ratn Shah, Guanfeng Wang, and Roger Zimmermann

p1 

p2 

p3 

p5 

p4 

p6 
p1

p3
p4

p

p

Route 1 

Route 2 

(a) Problems caused by loops in GPS trajectories.

p1 

p2 

p3 

p5 

p4 

p6 

p3
p4

p

p

(b) Simplified trajectory a�er applying the

Douglas-Peucker algorithm.

Fig. 7. Segment-based map matching for trajectories with loops.

:'& :(&

:O&:,&

:S&

:,& :O

(a) Problems caused by hives in GPS trajectories.

:'& :(&

:O&:,&

:S&

:(

:O&:,& :O

(b) Simplified trajectory a�er applying the

Douglas-Peucker algorithm.

Fig. 8. Segment-based map matching for trajectories with hives.

due to the general GPS noise. As illustrated in Figure 8(a), traditional map matching algorithms
process each GPS point individually where stop points can cause significant errors in the map
matching results. Figure 8(b) shows that by applying trajectory simplification, noisy points and
oversampling at stop points can be effectively reduced. Though the number of GPS points available
in a simplified trajectory decreases, the shape of the curve can still be well preserved while setting
the error tolerance to a reasonable value. The technical details of the proposed segment-based
probabilistic modeling are introduced as below.

4.2.1 Trajectory Segmentation. In our implementation, we obtain the list of key GPS points by
applying the Douglas-Peucker algorithm [13]. Given a trajectory composed of line segments, this
algorithm simplifies the trajectory by finding a similar curve with fewer points. For example in
Figure 7(b), a trajectory consisting of six GPS points is approximated by curve {p1,p3,p6} after sim-
plification. Subsequently, the trajectory is divided into two segments {p1,p2,p3} and {p3,p4,p5,p6},
with the key GPS points being p1, p3, and p6.

The Douglas-Peucker algorithm initially keeps the first and the last points in the trajectory (i.e.,
p1 and p6), and then finds the point that is the farthest from the line segment between the first
and the last points (i.e., p3). This point will only be kept when its distance to the line segment is
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greater than a pre-defined threshold ϵ . If this point is kept, the algorithm will recursively process
the segment from the first point to this point and the segment from the this point to the last point.
Otherwise, any points other than the first and the last points can be discarded with the simplified
curve being no worse than ϵ .

4.2.2 Path Recovery. For an input trajectory T = {p1,p2, ...,pn}, we first detect the key GPS

points, denoted as T̃ = {p̃1, p̃2, ..., p̃ñ}, based on the Douglas-Peucker algorithm. Next, we retrieve
the nearest ten road segments and form the candidate set Ei = {ei1, ei2, ..., ei10} for each key point

p̃i . We model the GPS noise with a Gaussian kernel and estimate the probability of candidate ei
k

being the correct match of key point p̃i as [21]

p(eik ) =
1

√
2πσ

e
dist (ei

k
, p̃i )2

2σ 2 (6)

where σ is the standard deviation of GPS measurements, dist(ei
k
, p̃i ) represents the minimum great

circle distance between candidate ei
k
and point p̃i .

The probability of a route being the correct match of the real path between two neighboring
key points p̃i and p̃i+1 is calculated as follows. For any two candidate road segments ei

f
and ei+1t

(1 ≤ f , t ≤ 10, 1 ≤ i < ñ), we obtain the optimal action sequence that is connecting ei
f
and ei+1t ,

denoted as AS∗(ei
f
, ei+1t ), based on the shortest path search in the action graph. Subsequently, we

compute the sum of the action cost in AS∗(ei
f
, ei+1t ) as

C∗(eif , e
i+1
t ) =

∑

a∈AS∗(e i
f
,e i+1t )

a.cost (7)

Osogami and Raymond [22] assumed that a route with total cost C matches the real path with
a probability proportional to exp(−C). However, as the length of the trajectory segment between
p̃i and p̃i+1 has a great impact on the route cost C∗(ei

f
, ei+1t ), we further normalize the cost by the

great circle distance between p̃i and p̃i+1, and the fraction of the number of GPS points in this
segment over the total number of GPS points in trajectoryT

p(eif , e
i+1
t ) = exp

(
− N (p̃i , p̃i+1)
n · dist(p̃i , p̃i+1)

·C∗(eif , e
i+1
t )

)
(8)

where N (p̃i , p̃i+1) represents the number of GPS points in the segment between key points p̃i and
p̃i+1, n is the total number of GPS points in the input trajectoryT , and dist(p̃i , p̃i+1) represents the
great circle distance between points p̃i and p̃i+1.
A global candidate path for the entire trajectory T goes through the candidate road segments

of every key point p̃i in temporal order: e1
k1

→ e2
k2

→ · · · → eñ
kñ
. We estimate the likelihood of a

global candidate path by combining Eq. 6 and Eq. 8

l(e1k1 → e2k2 → · · · → eñkñ )
= p(e1k1 ) · p(e

1
k1
, e2k2 ) · p(e

2
k2
) · · · p(eñkñ )

(9)

The candidate path with the highest likelihood is returned as the final map matching results,
which can be efficiently solved by a dynamic programming technique.

P = argmax l(e1k1 → e2k2 → · · · → eñkñ ) (10)

Algorithm 1 outlines our feature-based map matching technique. As aforementioned, it detects
a set of key GPS points and processes each segment in-between to calculate the likelihood values
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ALGORITHM 1: Feature-based Map Matching.

Input: trajectoryT and road networkG(V ,E)
Output: the matched path P

1 Find a set of key GPS points T̃ = {p̃1, p̃2, ..., p̃ñ} in T by Douglas-Peucker algorithm

2 for each segment s between p̃i and p̃i+1 do

3 Extract path features based on s and G(V , E)
4 Update action cost by Eq. 5

5 Retrieve candidate road segments Ei and Ei+1 for key points p̃i and p̃i+1
6 for ei

f
∈ Ei , ei+1t ∈ Ei+1 do

7 compute p(ei
f
), p(ei+1t ) by Eq. 6

8 compute p(ei
f
, ei+1t ) by Eq. 8

9 end

10 end

11 Initialize f [e1
k
] = p(e1

k
), k = 1, 2, ..., 10

12 for i = 2 to ñ do

13 for eit ∈ Ei do

14 for ei−1
f

∈ Ei−1 do

15 l = f [ei−1
f

] · p(ei−1
f
, eit ) · p(eit )

16 if l > f [eit ] then
17 f [eit ] = l
18 pre[eit ] = ei−1f

19 end

20 end

21 end

22 end

23 P = argmaxe1
k1
→e2

k2
→···→e ñ

kñ

f [eñ
kñ

]

24 return P

p(ei
f
), p(ei+1t ), and p(ei

f
, ei+1t ). In terms of the global optimization, f [ei

k
] records the highest likeli-

hood of a candidate path ending at road segment ei
k
. pre[ei

k
] caches a candidate road segment of

the previous key point p̃i−1 from which the highest likelihood f [ei
k
] is obtained. It is easy to see

that the match of the ending point p̃ñ is argmaxe ñ
kñ

f [eñ
kñ
], and pre[eñ

kñ
] records the match of the

previous point p̃ñ−1. Therefore, the rest of the path can be reversely recovered from pre[ ], and so
on so forth.

4.3 Online Updating and Decoding

We have introduced in detail how our method processes trajectories in an offline manner. How-
ever, to meet the needs of real-time applications such as traffic sensing, online solution is always
desirable that performsmapmatching incrementally while future data points are yet to come. One
straightforward strategy is to divide the trajectory into fixed-sized sequences and handle them in-
dependently [33], i.e., the system waits and decodes only the new observations every D seconds
where D is the window size. This results in the following changes compared with the offline map
matching algorithm: (1) The trajectory input changes to a sub-trajectory that only contains theGPS
points in the current window; (2) The parameter n in Eq. 8 is revised to the number of GPS points
in the current window, since the total number of GPS points in the whole trajectory is unknown;
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(3) The cost associated with the road-related features, Clen andCturn in Eq. 5, is pre-computed and
cached to improve the system efficiency; (4) The cost associated with the trajectory-related features,
Ctr aj in Eq. 5, is calculated online once a new window of observations arrives. More specifically
talking about the action cost updating,Clen andCturn remain unchanged when new observations
arrive as the road-related features are independent of GPS points. Therefore, it is preferable to
pre-compute Clen and Cturn for system efficiency concerns. On the other hand, the calculation
of Ctr aj relates to the trajectory input and thus has to be computed online. Similar to traditional
HMM-based map matching, our method computes the distance from a new observation to the
nearby roads and updates the trajectory-related features on-the-go, but with a slight overhead to
perform trajectory segmentation as introduced in Section 4.2.1.
Generally speaking, there is a tradeoff between the map matching accuracy and the output de-

lay. A larger window size D usually leads to a more accurate matching results but a longer output
delay, and vice versa [20, 28]. With more observations available (e.g., in the extreme case where the
whole trajectory has been revealed before processing), the Douglas-Peucker algorithm can gener-
ate better trajectory simplification results and subsequently provide more accurate information
that benefits the decoding process. The window size D should be chosen according to system re-
quirements. Please note that it is also feasible to refine the predicted matches in previous windows
by incorporating new observations to performmapmatching repeatedly. By doing so, increasingly
improved map matching results can be obtained for each GPS point until the whole trajectory has
been revealed. We have evaluated both the offline execution time and the online output delay of
our proposed method. Experimental results show that our method always achieves the best map
matching accuracy with competitive computational cost when comparing to the state-of-the-art
map matching algorithms.

4.4 Discussion on Supplementary Data Sources

Map matching problems have been studied for decades. But due to the lack of a public large-scale
information-rich testing dataset, researchers mostly collect their own dataset for algorithm design
and evaluation [1, 3]. Additional information other than GPS can help significantly improve map
matching results. Here we introduce three types of such important supplementary information
and briefly discuss how to integrate each of them into our proposed system.

4.4.1 GPS Accuracy Measures. GPS devices can provide users an accuracy measure associated
with each latitude-longitude coordinate pair. This number indicates the degree of closeness be-
tween the GPS reading and the true location. While the GPS accuracy measure can be useful for
automatic positioning data correction [32, 36], which serves as a preprocessing step before apply-
ing map matching algorithms, it is also possible to integrate the GPS accuracy measure in map
matching algorithms directly. For example, in our proposed system, parameter σ in Eq. 6 models
the GPS noise. Instead of using a global constant value, local σ settings per GPS point can be es-
timated based on the GPS accuracy measures. Moreover, in our system’s trajectory segmentation
module, GPS accuracy measure can be used to avoid selecting key points with low accuracy by
modeling the weight of each GPS point in trajectory simplification algorithms [15].

4.4.2 Smartphone Internal Sensors. With the ubiquity of sensor-equipped smartphones, it has
become increasingly feasible to leverage other sensors (e.g., WiFi and inertial sensors) in addition
to GPS to enrich digital maps [2, 29]. Current public maps only provide users the basic road net-
works without road features. But with the availability of various smartphone’s sensor data, rich
road semantics (e.g., tunnels, curves, bridges, speed bumps) can be automatically detected using
a decision-tree classifier [3]. Road features have impacts on drivers’ route choices, and therefore
can be taken into consideration in the action cost modeling in our proposed system.
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Table 1. Number of tracks in the worldwide GPS dataset tagged with different features.

u-turns hives loops

25 3 24

gaps
congruence-

issues
no tags

73 20 19

4.4.3 Large Historical GPS Trajectories. Dense and large users’ historical GPS trajectories can
be very helpful in developing map matching algorithms, but at the same time much more difficult
to acquire compared with smartphone’s sensor data. Similar to the discussions in Section 4.4.2,
historical GPS trajectories can be used to detect road semantics, model action cost, and derive
travel patterns [22, 40]. Moreover, the historical trajectories can also be used to detect missing
roads in digital maps [31]. In most map matching systems, researchers assume that the map data
is complete, which is unfortunately not always true in real-life scenarios. Roads get built and
removed, an inaccurate mapwill result in failed or incorrect matches between GPS points and road
segments. This problem can be (partially) solved if large historical GPS trajectories are available,
and thus obtaining improved map matching results.

5 EVALUATION

We implemented the proposed map matching algorithm and evaluated both its effectiveness and
efficiency. The evaluation consists of three steps. The first part introduces the experimental setup
and the details of the testing dataset. The second part estimates the value of the key parameter
in our proposed model. And the third part verifies the offline and online version of our proposed
approach by comparing it to the state-of-the-art map matching methodologies.

5.1 Dataset and Experimental Setup

The dataset we used for evaluation is a large-scale real dataset which consists of 100 GPS tracks
all over the world [14]. Each track is associated with a map and a correctly map-matched route.
Moreover, the tracks are labeled with a selection of features that may pose difficulties to map
matching algorithms including:

• u-turns: the vehicle turned 180° and reversed the direction of travel

• hives: large numbers of points packed in a small area

• loops: the vehicle was traveling in circles

• gaps: temporal gaps existing in the track

• severe congruence issues: situations where the map and the track are incongruent or dissimilar

The number of tracks that are labeled with each of the five features is reported in Table 1. Addi-
tionally, there are 19 tracks formed by high quality GPS data with no tags associated. As illustrated
in Table 2, the length of the tracks varies from 5 to 100 kilometers, and the dataset contains 247,251
points in total with a sampling rate of 1 Hz. The average length and the average duration of the 100
tracks are 26.8 km and 4950.7 s, respectively. For more details, please refer to the dataset paper [14].
The sampling interval of real GPS data varies significantly from less than one minute to more

than five minutes [38]. Therefore, it is important to evaluate the robustness of the proposed map
matching algorithmwhen applied to low sampling rate GPS data. To achieve this goal, we generate
five datasets by subsampling the original data with different sampling intervals of 60 s, 120 s, 180
s, 240 s, and 300 s, respectively. The average number of GPS points per track versus the sampling
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Table 2. Trajectory statistics of the worldwide GPS dataset.

Statistics Track Length (m) Track Duration (s)
Number of GPS

Points

Min. 5005.9 265.0 262.0
Max. 94172.4 154030.0 19313.0

Average 26754.2 4950.7 2472.5
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Fig. 9. Average number of GPS points and segments before and a�er trajectory simplification.

rate is illustrated in Figure 9. Moreover, we also report the average number of the key points per
track detected based on the trajectory simplification technique as introduced in Section 4.2.1.
From the results we can see, the shape of a trajectory can be described with much fewer points

especially when the sampling rate is relatively high. For example, with a sampling interval of 60 s,
the number of key GPS points detected, which is 19.12, is less than half of the total number of GPS
points, which is 46.74, per track on average. The shape of a trajectory can be better preserved with
more key points by setting the distance threshold ϵ required by the Douglas-Peucker algorithm
to a smaller value. However, this is not necessary because our method works well as long as the
segments between key points do not contain any loops. Thereby, we intuitively set the distance
threshold ϵ = 0.001 throughout the experiments, which obtains excellent mapmatching accuracies
when comparing to other existing methods.

5.2 Parameter Estimation

The balancing factor ω in Eq. 5 is a key parameter in our model. It controls the weights of road
length and transition angle in the action cost estimation. Here we examine the map matching
results obtained by setting ω to different values. The matching accuracy is measured by the Route
Mismatch Fraction (RMF) proposed by Newson and Krumm [21]. This measure computes the total
length of the false positive road segments, denoted as d+, and the total length of the false negative
road segments, denoted as d−. Thus, the summation of d+ and d− is the total mismatched distance.
Let d0 represent the total length of the real path. RMF quantifies the map matching error by the
fraction of (d+ + d−)/d0, so that a small RMF value indicates the map matching results are more
similar to the real path.

RMF = (d+ + d−)/d0 (11)
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Fig. 10. Route mismatch fraction plot based on different combinations of parameter ω and sampling inter-

vals.

Figure 10 shows the average route mismatch fraction plotted against ω on trajectories sampled
with different intervals, which are 60 s, 120 s, 180 s, 240 s, 300 s, respectively. As can be seen, the
best map matching results are obtained with ω setting to 100 or 150 in all the five subfigures. The
accuracy of the predicted path slightly decreases with smaller or largerω values, but the variations
are not significant within a range of ω settings (e.g., 50 < ω < 300). Additionally, the variation
trend of the route mismatch fraction against ω is similar in all the five subfigures with different
sampling intervals, which indicates that ourmethod is robust to trajectories with various sampling
intervals or even temporal gaps.
Generally speaking, improved map matching results can be obtained with a range of ω values.

But if large historical GPS data are available, such parameters can be better tuned by machine
learning techniques such as the maximum entropy inverse reinforcement learning [42]. Regional
factors can also be considered in the user behavior modeling based on training data with good
geospatial coverage all over the world.

5.3 Comparison with the State-of-the-art

We evaluated the effectiveness and efficiency of the proposed mapmatching algorithm. In addition
to the Route Mismatch Fraction (RMF) [21], we also report the map matching precision, recall and
F1 score [3] for accuracy comparison. The map matching precision is defined as the ratio between
the distance of the matching sequence and the total distance of the predicted trace, and recall is
defined as the ratio between the distance of the matching sequence and the total distance of the
ground truth trace.

Precision =
Total distance o f matchinд sequence

Total distance o f predicted trace
(12)

Recall =
Total distance o f matchinд sequence

Total distance o f дround truth trace
(13)

We also calculate the F1 score which is defined as:

ACM Transactions on Spatial Algorithms and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Feature-based Map Matching for Low-Sampling-Rate GPS Trajectories 39:17

F1 = 2 × Precision × Recall

Precision + Recall
(14)

Next, we evaluate the effectiveness of the proposed method using low sampling rate GPS data
with various challenging features. We compare our methodwith the following two state-of-the-art
algorithms and report route mismatch fraction based on different combinations of track features
and sampling rates:

• HMM-basedMap Matching: It leverages a Hidden Markov Model (HMM) to find the most
likely sequence of road segments by conjunctively considering the measurement noise and
the road network topology [21].

• IRL-based Map Matching: It extends the HMM-based map matching approach and esti-
mates the transition probability between two road segments by a fusion of transition angle
and travel distance, which is trained by Inverse Reinforcement Learning (IRL) [22].

Throughout the experiments, the standard deviation of GPS measurements σ in Eq. 6 is set to 10
in all methods. The scaling factor β , which is used to estimate the transition probabilities in HMM-
based and IRL-basedmethods, is also set to 10, but qualitative findings hold for a range of parameter
settings [22]. The balancing factor ω in Eq. 5 is set to 100 in both the IRL-based method and our
proposed feature-based method. For efficiency concerns, we only retrieve road segments that are
within 200 meters of each GPS point to construct the candidate set in HMM-based and IRL-based
methods. We implemented all the three methods with Python and conducted all the experiments
on a server with two Intel® Xeon® E5-2680 v3 2.5GHz CPUs and 512 GB RAM. PostgreSQL and
pgRouting were installed and utilized as the database for efficient geospatial search.

5.3.1 OfflineMapMatching Results. Wefirst evaluate the performance of our offlinemapmatch-
ingmethod.We conduct experiments on theworldwide testing dataset and report the average RMF,
precision, recall, F1 score, and the processing time per GPS point over the 100 GPS trajectories in
Tables 3, 4 and 5, respectively.

We first compare the RMF based on five different sampling rates, and our proposed method
obtain the best map matching accuracy in all cases. As illustrated in Table 3, our algorithm outper-
formed the HMM-based method by 12.0%, 18.0%, 20.7%, 26.6%, and 29.7% with sampling intervals
60 s, 120 s, 180 s, 240 s, and 300 s, respectively. Traditional HMM-based methods simply assume
that drivers would always take the shortest path in terms of travel distance between two candi-
date road segments, which is not necessarily true especially for low sampling rate GPS data. With
a growing sampling interval, the uncertainty in GPS trajectories is also increasing because most
of the movement details are lost. Although the HMM-based method is able to handle data spar-
sity to some extent (e.g., 30 seconds [21]), its effectiveness decreases dramatically as the sampling
interval grows much larger. To obtain improved results, Osogami and Raymond proposed an IRL-
based method based on the assumption that drivers would take the more “natural” path instead
of the shortest path [22]. From Table 3 we can see that the IRL-based technique outperformed the
HMM-based method for sampling periods larger than two minutes, but it only achieved similar or
even worse results for the cases reported in the first two columns. It indicates that the IRL-based
method is more susceptible to data noise as it tries to find a matching road segment for every GPS
point. Our method, on the other hand, segments a trajectory and aims to find a matching route for
every segment. Therefore, the robustness of the proposed feature-based method has been greatly
improved by simultaneously considering all the points in one segment while performing map
matching. Compared with the IRL-based method, our approach achieved improvements of 32.3%,
15.7%, 13.3%, 8.1%, and 6.4% in the five groups with different sampling intervals, respectively. In

ACM Transactions on Spatial Algorithms and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:18 Yifang Yin, Rajiv Ratn Shah, Guanfeng Wang, and Roger Zimmermann

Table 3. Average route mismatch fraction comparison of offline map matching over the 100 test trajectories.

Sampling Rate (s) 60 120 180 240 300

HMM-based 0.0657 0.1189 0.1773 0.2610 0.2856
IRL-based 0.0854 0.1157 0.1621 0.2085 0.2147

Feature-based 0.0578 0.0975 0.1406 0.1917 0.2009

Table 4. Average precision, recall, and F1 score comparison of offline map matching over the 100 test trajec-

tories.

(a) Precision

Sampling Rate (s) 60 120 180 240 300

HMM-based 0.9696 0.9514 0.9236 0.8867 0.8875

IRL-based 0.9610 0.9524 0.9331 0.9103 0.9095

Feature-based 0.9710 0.9567 0.9372 0.9149 0.9131

(b) Recall

Sampling Rate (s) 60 120 180 240 300

HMM-based 0.9669 0.9347 0.9018 0.8577 0.8517

IRL-based 0.9555 0.9316 0.9036 0.8740 0.8667

Feature-based 0.9747 0.9458 0.9223 0.8877 0.8789

(c) F1 Score

Sampling Rate (s) 60 120 180 240 300

HMM-based 0.9676 0.9420 0.9114 0.8704 0.8668

IRL-based 0.9576 0.9407 0.9162 0.8900 0.8849

Feature-based 0.9721 0.9507 0.9286 0.8998 0.8937

Table 5. Average processing time (in seconds) per GPS point of offline map matching over the 100 test tra-

jectories.

Sampling Rate (s) 60 120 180 240 300 Mean

HMM-based 0.25 0.23 0.22 0.22 0.21 0.23
IRL-based 0.61 0.60 0.59 0.61 0.57 0.60

Feature-based 0.67 0.86 0.96 0.90 0.96 0.87

terms of precision, recall, and F1 score, Tables 4(a) and 4(b) show that our proposed method ef-
fectively improved both precision and recall at all the five sampling rates. Tables 4(c) reports the
F1 score, which is the harmonic mean of precision and recall, and provides a single measurement
for the system. In terms of efficiency, we report the processing time per GPS point of the three
methods in Table 5. Except for the algorithm complexity, a number of other factors also have an
impact on the processing time including the road network complexity, GPS sampling rate, the ex-
istence of gaps in trajectories, etc.. We report the mean average value in the last column, and as we
can see that the HMM-based method is the most efficient but works less satisfactory in terms of
the map matching accuracy. Our proposed method additionally considers the shape of the trajec-
tory and the transition angles between roads, and obtains the best map matching accuracy with a
reasonable increase in the processing time.
Next, we evaluate the effectiveness of our proposed approach for trajectories with different

challenging features. The average route mismatch fractions are reported in Figure 11. Generally
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Fig. 11. Route mismatch error comparison of offline map matching with different sampling rate.

speaking, the qualitative findings are mostly the same as the results reported in Table 3. By seg-
menting an input trajectory into relatively straight subsequences, our method is able to obtain
the highest accuracy even when applying to trajectories with u-turns and loops. For trajectories
labeled by hives where a large volume of GPS points are packed in a small area, the IRL-based
method performed much worse than the rest of the cases due to its sensitivity to data noise. On
the other hand, Figure 11(f) shows the comparison when dealing with good quality data without
any challenging features associated. Although the IRL-based method performed comparatively
well or even slightly better than the proposed approach in some cases, it failed to maintain the
good performance in other groups with decreasing sampling intervals. While in most of the cases,
it is easy for humans to manually judge which is the correct route of a track on a map, there are
situations where the correct matching is not clear even to us. Kubička et al. labeled such situations
as severe congruence issues when the map and the track are incongruent or dissimilar [14]. Please
note that although the hand-correction made by humans cannot be considered as the ground truth
data for trajectories annotated with congruence-issues, the results shown in Figure 11(e) indicate
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Table 6. Average route mismatch error comparison of online map matching with different window sizes.

Window Size (s) 120 180 240 300 360

HMM-based 0.0814 0.0754 0.0750 0.0705 0.0708
IRL-based 0.1077 0.0888 0.0947 0.0932 0.0872

Feature-based 0.0851 0.0760 0.0755 0.0679 0.0660

Table 7. Average precision, recall, and F1 score comparison of online map matching with different window

sizes.

(a) Precision

Window Size (s) 120 180 240 300 360

HMM-based 0.9573 0.9615 0.9634 0.9654 0.9660

IRL-based 0.9425 0.9542 0.9525 0.9535 0.9576

Feature-based 0.9572 0.9620 0.9642 0.9674 0.9685

(b) Recall

Window Size (s) 120 180 240 300 360

HMM-based 0.9639 0.9661 0.9642 0.9667 0.9659

IRL-based 0.9530 0.9602 0.9556 0.9562 0.9578

Feature-based 0.9634 0.9674 0.9632 0.9677 0.9680

(c) F1 Score

Window Size (s) 120 180 240 300 360

HMM-based 0.9600 0.9631 0.9631 0.9654 0.9653

IRL-based 0.9470 0.9565 0.9533 0.9541 0.9570

Feature-based 0.9592 0.9637 0.9629 0.9668 0.9676

Table 8. Average latency (in seconds) comparison of online map matching with different window sizes.

Window Size (s) 120 180 240 300 360

HMM-based 51.90 79.99 109.16 139.12 168.42
IRL-based 52.39 81.02 110.35 140.98 170.32

Feature-based 52.86 81.52 110.99 141.47 171.07

that the route predicted by our proposed algorithm is more similar to human intuition. This is also
important because it is reasonable to assume that a human mind is usually superior in matching
GPS tracks on a digital map.

5.3.2 Online Map Matching Results. As our method focuses on low-sampling-rate trajectories,
we evaluate the route mismatch fraction and the online output latency with the sampling interval
set to 60 s. We compare the RMF, precision, recall, F1 score and the latency based on five different
window sizes, which are 120 s, 180 s, 240 s, 300 s, 360 s, and report the average results over the 100
test GPS trajectories in Tables 6, 7 and 8, respectively.
As can be seen, all the three methods achieve high precision, recall and F1 scores. By compar-

ing Table 6 and Table 8, we observe that a larger window size D results in a longer output delay
but more accurate map matching results. The HMM-based method outperformed our proposed
approach when the window size was smaller than 240 s. This is because the HMM-based method
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Fig. 12. The route mismatch fraction (in percentage) and latency (in seconds) of map matching results for

trajectories with different challenging features.

processed each GPS point individually, and was less susceptible to the number of GPS observa-
tions available before running the algorithm. Comparatively, our proposed method reduces the
data noise by performing trajectory segmentation and processes one segment at one time. With
more GPS observations, the shape of the trajectory can be better revealed and thus benefit our
proposed decoding process. As in this experiment, our proposed method obtained the best map
matching accuracy with a window size larger than 240 s. In the case ofD=360 s where enough GPS
observations are available in a temporal window for processing, our method successfully reduced
the RMF by 6.8% and 24.3% compared with the HMM-based method and the IRL-based method,
respectively. In terms of the online latency, we can see from Table 8 that the HMM-based method
achieves the highest efficiency. As both of our method and the IRL-based method consider the
transition angles between two road segments, a slight overhead has been introduced due to the
increase of the shortest path search space. Moreover, our method performs an additional trajec-
tory simplification step. Fortunately, the Douglas-Peucker algorithmwe adopted is highly efficient.
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Overall, the computational cost of our proposed method is competitive with the other two state-of-
the-art map matching algorithms. The latency increase in our method is less than three seconds,
which is small compared with the window size.

To understand the impact of trajectory characteristics on map matching, we illustrate the RMF
versus the corresponding latency for trajectories with different challenging features in Figure 12.
Generally the qualitative findings remain the same as the average results reported in Tables 6 and 8.
A larger window size leads to more accurate map matching results and our proposed method out-
performs its competitors when the window size is greater than 240. But we also observe two in-
teresting phenomena from the results shown in Figure 12. First, for trajectories labeled by hives, a
larger window size surprisingly resulted in an accuracy decrease in the HMM-based and the IRL-
based methods. This is because these two methods processed each GPS point individually and got
confusedwhen the position change in GPSwasmostly caused by data noise. Our proposedmethod,
on the other hand, was able to successfully group the GPS points into one segment and effectively
reduce the impact of data noise in this situation. The second observation concerns trajectories
labeled by loops. As we can see from Figure 12(c), our proposed method performed less effectively
in this case. Trajectories with loops usually contain a large number of turnings, thus the shape of
such trajectories become more difficult to be preserved when performing the trajectory simplifica-
tion. To decrease the distance threshold ϵ required by the Douglas-Peucker algorithmmay help in
this case. To wait until the whole trajectory to be revealed before applying the Douglas-Peucker
algorithm also helps generate better trajectory simplification results. As shown in Figure 11(c) in
the offline mapmatching evaluation, our method outperforms its competitors even when handling
trajectories with loops.

6 CONCLUSION AND FUTUREWORK

We have presented a novel feature-based map matching framework that models the likelihood
of a candidate route based on both GPS observations and human factors. To improve the system
robustness to data noise, we simultaneously process multiple GPS points at a time by segmenting
the input trajectory into coherent subsequences. Road characteristics such as length and transition
angles are incorporated as these factors have a major affect on a driver’s route choice. We conduct
extensive experiments on a challenging real-world dataset to evaluate both the offline and the
online versions of our proposed approach. We compare our method to two state-of-the-art map
matching algorithms in terms of effectiveness and efficiency, and the experimental results show
that our proposed method is able to achieve the best map matching accuracy with a reasonable
tradeoff in the processing time.
In the future, we plan to explore the fusion of additional features for user behavior cost esti-

mation. With a digital map that contains more semantic information such as road type and speed
limit, improved results can be obtained by integrating these road characteristics in the action cost
estimation. As discussed in Section 4.4, rich road semantics can also be detected and inferred when
more supplementary data sources become available. Moreover, the online version of our proposed
method can be further optimized. For example, we currently divide the trajectory into fixed-sized
sequences and process each segment individually. This part can be improved by developing more
advanced online map matching strategies that perform tradeoff analysis and decide the optimal
timing for decoding.
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