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Videos are increasingly geo-tagged and used in practical and powerful GIS applications. However, video
search and management operations are typically supported by manual textual annotations, which are
subjective and laborious. Therefore, research has been conducted to automate or semi-automate this pro-
cess. Since a diverse vocabulary for video annotations is of paramount importance towards good search
results, this paper proposes to leverage crowdsourced data from social multimedia applications that host
tags of diverse semantics to build a spatio-temporal tag repository, consequently acting as input to our auto-

annotation approach. In particular, to build the tag store, we retrieve the necessary data from several social
multimedia applications, mine both the spatial and temporal features of the tags, and then refine and index
them accordingly. To better integrate the tag repository, we extend our previous approach by leveraging the
temporal characteristics of videos as well. Moreover, we set up additional ranking criteria on the basis of
tag similarity, popularity and location bias. Experimental results demonstrate that, by making use of such
a tag repository, the generated tags have a wide range of semantics, and the resulting rankings are more
consistent with human perception.
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1. INTRODUCTION

With advances in mobile device technology and network engineering, user generated
videos [Snoek et al. 2011; Rahman et al. 2010] have become very popular in recent
years. Many of the videos are created for and used by geography-related applications,
such as surveillance or tourism. For example, Webcams.travel is a well-known map-
video composite website, presenting world-wide views of tourism, vacations, etc. To
search videos from a large corpus, annotation (or tagging) is still one of the most prac-
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tical and powerful tools [Ames and Naaman 2007]. However, manual annotations are
laborious, often ambiguous, and their uneven quality has been well documented [Yan
et al. 2008; Suchanek et al. 2008]. In particular, annotating a video is more challenging
than annotating an image, because it consists of multiple scenes, where some are eas-
ily overlooked. Therefore, researchers have investigated solutions to automate or semi-
automate the annotation process. Principally, candidate tags for an image or a video
can be inferred from its nearest neighbors based on certain similarity measurements.
Some prior solutions only analyzed the visual features of multimedia content, which
is very challenging for open domains and usually very compute-intensive [Jain and
Sinha 2010]. In recent years, data-driven methods have been suggested which lever-
age the collective knowledge that resides in some social multimedia applications [Sig-
urbjörnsson and Van Zwol 2008; Siersdorfer et al. 2009; Wu et al. 2009]. The anno-
tation task can also be addressed by employing relevance models, which are used to
estimate the joint distribution of words and images based on a high quality training
dataset [Jeon et al. 2003; Monay and Perez 2003; Feng et al. 2004]. With the increasing
availability of geo-tagged images from social sites such as Flickr, geo-aware tag sug-
gestion tools that consider both the geographic context and multimedia content have
also been proposed [Abdollahian and Delp 2009; Moxley et al. 2008]. While most of the
existing work focuses on entire-video tag suggestions, several techniques have been
proposed to localize tags at the shot- or even frame-level granularity [Ballan et al.
2010; Ballan et al. 2011; Shen et al. 2011].

In our prior work, we leveraged the geospatial properties of videos and proposed a
sensor-rich and data-driven approach to automatically generate tags for them [Arslan
Ay et al. 2008; Shen et al. 2011]. This approach does not analyze the visual features,
and therefore is particularly effective specifically for geography-oriented videos. This
method first models the viewable scenes of the camera as geometric shapes by means
of its accompanied sensor data, and then determines the geographic objects that are
visible in the video by querying geo-information databases through the viewable scene
descriptions. Subsequently textual information about the visible objects is extracted
to serve as tags. However, the data-driven nature implies that the performance of the
aforementioned approach significantly depends on the quality of the geo-information
databases used. Previously we built our prototype using geographical information sys-
tem (GIS) sources, but they can currently still be incomplete. Details are discussed
later in Section 3.2. In order to enrich the candidate tag repository in our system, this
study concentrates on how to screen raw tags from social multimedia websites, build a
tag repository, and integrate it with our auto-annotation system. The major contribu-
tions are:

– We mathematically model the geographic distribution of tags, extract meaning-
ful features from the model, and build both simple and SVM-based classifiers to
discover positionable tags. Furthermore, we demonstrate that the simple classi-
fier which does not require manual input can achieve equally good performance
compared to the SVM-based approach. Similarly, we model the temporal distri-
bution of positionable tags to mine the duration when they are appropriate to be
used.

– To better coalesce with the repository of tags indexed in the spatio-temporal do-
main, we extend our prior space-only visibility computation algorithm to the
spatio-temporally combined domain, mine more information from social multi-
media applications to compute tag similarities and popularities, and re-score
tags’ relevances to videos, achieving a better quality of the generated tags.

The rest of this paper is organized as follows. We introduce the related work in
Section 2 and review the automatic annotation system proposed in our prior work in
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Section 3. In Section 4, we explain the method to profile the geographic and the tem-
poral distributions of tags, and index them in the spatio-temporal domain. Next, in
Section 5, we discuss how to acquire more social hints, such as tag similarity and pop-
ularity, to rank tags better. Then, we evaluate how well the new data source benefits
the auto-annotation framework in Section 6. Section 7 concludes.

2. RELATED WORK

Automating or semi-automating the tag annotation process is a popular research topic.
A number of studies have proposed state-of-the-art content analysis methods to under-
stand the semantics of multimedia content [Monay and Perez 2003; Feng et al. 2004; Qi
et al. 2007]. Alternatively, other studies proposed to leverage crowdsourced web data,
or combine it with visual features [Sigurbjörnsson and Van Zwol 2008; Siersdorfer
et al. 2009; Wu et al. 2009]. Social media content, such as videos and images uploaded
to YouTube and Flickr, is widely exploited recently. In general, the candidate tags for
an image or a video can be suggested by its nearest neighbors. Siersdorfer et al. [2009]
proposed to capture the connections between videos using their content redundancy.
Ballan et al. [2010] presented a system for video tag suggestions and temporal lo-
calization based on the collective knowledge and visual similarity of frames. Several
annotation techniques based on relevance models, which are used to estimate the joint
distribution of words and images, have also been proposed and have achieved encour-
aging performance [Jeon et al. 2003; Monay and Perez 2003]. Liu et al. [2007] argued
that the performance and scalability of traditional relevance-model-based methods can
be limited by the semantic gap and the dependence on training data, and further pro-
posed a dual cross-media relevance model which estimates a joint probability from the
expectation over words in a pre-defined lexicon.

Recently, researchers have investigated the relationship between tags and geo-
contexts of multimedia content, and used it to suggest tags. Moxley et al. [2008]
proposed a tag suggestion method exploiting both content-based analysis and geo-
referenced information. Given an image to suggest tags, their system queries a number
of geographically closeby images, extracts their tags as candidates, and scores them
based on their local popularity and the visual similarity between the target image and
its neighbors. Abdollahian et al. [2009] proposed a similar method, but it was aimed
at video annotation instead. To conduct a visual comparison between the target video
and geographically selected images, they segment the video and extract key frames
to represent it. These two methods have two limitations compared to ours. First, it
is computationally challenging to require a k-nearest neighbor computation for each
image/video to suggest tags. Second, without investigating the global distribution of
a tag, it cannot reliably be judged whether the tag carries distinguishable semantics
in some place even if it frequently appears. For example, tourism and travel may be
popular in places of interest all over the world, to the point where they cannot help
users to recall where the image/video was taken.

Larson et al. [2011b] presented three tasks devoted to tagging and geo-tagging at
the MediaEval 2010 benchmarking initiative [Larson et al. 2011a]. MediaEval brings
multimedia researchers together to pool research resources and focus efforts on de-
veloping solutions for challenging issues facing multimedia indexing and retrieval.
Recently, several techniques have been proposed to uncover the relationship between
word concepts and geographical regions. Yanai et al. [2009] proposed to use both im-
age region and geo-location entropy to analyze relations between location and visual
features. Intagorn and Lerman [2011] proposed that the boundaries of places can be
learnt from noisy social annotations. Thomee and Rae [2013] uncovered the colloquial
boundaries of locally characterizing regions by innovatively modeling the data using
scale-space theory. In the geographical information systems literature, methods for
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smoothing raw data points to create continuous distributions have been proposed, with
the advantage of creating summary statistics that are less sensitive to high-frequency
noise in the data [Brunsdon et al. 2002]. The basic idea is to replace the data points
with continuous kernel functions, e.g., Gaussian probability distributions are usually
used. Sizov [2010] built a framework named GeoFolk for multi-modal characterization
of social media by combining text features with spatial knowledge in order to con-
struct better algorithms for content management, retrieval, and sharing. The method
captured the correlations between coordinates and tags by a mixture of latent topics,
where a mixture of per-topic Gaussian distributions was adopted.

There exist two studies that are most closely related to ours. Rattenbury et al. [2007]
proposed a method for finding the tags that represent places or events. In their method
the domain of study is partitioned into segments of some pre-defined scales, then the
tag usage in each segment is analyzed, and the significant segments where the tag is
used are identified and judged whether to indicate a place/event or not. Compared to
this study, our method does not need to partition the domain, but focuses on street-
level positioning and considers the global distribution. Moreover, we analyze the tag
similarity to increase the semantic diversity of the generated tags. The other relevant
study was proposed by Zhang et al. [2012]. They also investigated the distribution of
tags over the temporal and spatial domains, but they used the distributions as features
to mine the similarity among tags. Another important difference is that our study
demonstrates a novel scenario of using the correlation model of tags and locations,
that is, fertilizing the vocabulary for sensor-rich video annotations.

The geo-context of multimedia objects may be used for innovative applications. For
example, some studies demonstrated the usage of photos with geo-coordinates to create
tourism plans [Lu et al. 2010; Gao et al. 2010]. Others used geo-coordinates to place the
content on a map to facilitate browsing and navigation of images/videos [Toyama et al.
2003; Ahern et al. 2007]. Yin et al. studied the problem of discovering and comparing
geographical topics from GPS-associated documents [Yin et al. 2011b] and investigated
the problem of mining and ranking trajectory patterns from the uploaded photos with
geotags and timestamps [Yin et al. 2011a]. Besides tag annotation and video search,
such geographic mining based applications can benefit from the spatio-temporal tag
repository we aim to build in this work as well.

3. REVIEW OF THE AUTOMATIC TAG GENERATION SYSTEM

In our prior work, we leveraged the geospatial properties of videos and proposed a
sensor-rich and data-driven approach to automatically generate tags for them [Arslan
Ay et al. 2008; Shen et al. 2011]. Here we briefly review the key features of this ap-
proach and discuss the limitations of the data source we used before.

3.1. System Overview

Since our annotation method is applied to videos enhanced with sensor data, we cre-
ated special geospatial video recording applications for smartphones. They acquire,
process and record location and orientation meta-data along with the video streams.
These sensor data are used to model the coverage areas of the video scenes as spa-
tial objects. We introduced a viewable scene model (see Fig. 2) which describes the
scenes visible in the video based on the camera’s field of view (FOV) [Arslan Ay et al.
2008]. Compared to other video geo-tagging methods, which usually assign a single
geo-coordinate to a whole video [Hong et al. 2011; Tian et al. 2012], ours provides the
viewable scenes at frame-level granularity, such that it can enhance the accuracy of
video processing based on geo-context.

Next, the annotation process is automated by querying proper data sources using
the viewable scene descriptions [Shen et al. 2011]. Fig. 1(a) illustrates the framework
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Fig. 1. (a) The architecture of the automatic tag generation framework for sensor-rich outdoor videos, and
(b) the process of building a positionable tag repository and interfacing it with the remaining framework.

of our previous auto-annotation approach. The method has two major stages. In stage
one, the data sources are queried for visible objects in the videos where the objects’ vis-
ibility is calculated through spatial computations. Fig. 2 shows the 3D viewable scene
model we adopted and Fig. 3 illustrates how the visible objects are retrieved for each
frame (the visible area is highlighted in blue while the occluded area is highlighted in
yellow). In stage two, six relevance criteria are introduced to rank the tags based on
their relevance to the videos, which are the closeness to the FOVScene center, the dis-
tance to the camera location, the horizontally and vertically visible angle ranges, and
the horizontally and vertically visible percentages. In our framework, the term object
is abstract, and can be instantiated in many ways, depending on what the data source
is. The only requirement is that an object must be accurately located in some place,
such that its relevance to the video can be determined by our viewable scene model.
As illustrated in Fig. 1(b), this paper studies the problem of how to build a rich poti-
sionable tag repository that can be directly applied in the aforementioned annotation
system. The basic idea is to mine spatiotemporal tags from social multimedia applica-
tions. In the rest of this section, we will first discuss the limitations of the data source
we previously used, and then introduce the proposed approaches to incorporate more
varied data sources.

3.2. Data Source Limitations

The data-driven nature of the aforementioned approach implies that its performance
significantly depends on the quality of the adopted data sources. Previously we built
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Fig. 2. Illustration of the 3D FOVScene model.

Fig. 3. Illustration of a sample FOVScene and
the visible objects which are supplied by Google
Earth and determined by conducting geometry
computations (Copyright c© 2013 Google).
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Fig. 4. Conceptual illustration of the place-
ment of tags in the spatio-temporal domain. The
dashed lines show the durations of tag usage
while the projected circles are the related places
of the tags.

our prototype with the OpenStreetMap1 (or OSM for short) used as the data source.
OSM is a community based map application that can supply detailed information (e.g.,
names, types, outlines) of numerous geographic objects (or landmarks). However, its
completeness varies in different regions. For instance, the Merlion is a popular land-
mark in the Marina Bay area of Singapore and it was featured in our previous testing
videos, but our prototype was unable to recognize it because it is missing in OSM.
A more severe problem is that OSM only records landmarks in the physical world,
such that the semantics of the generated tags are all within the geospatial domain. In
contrast, though we require objects to be associated with some place, they do not nec-
essarily have to be landmarks. Events may also be strongly correlated with a location.
For example, the national day parade, which is an event, is held in the Marina Bay
once a year. Summarily, video tags may miss some important semantics if a system
only relies on the data sources of geographic objects. This motivated us to seek more
diverse data sources.

3.3. Seeking More Varied Data Sources

We desire that the data sources provide comprehensive information and diverse se-
mantics. However, the objects we investigated in our prior work were only physical
entities such as geographic landmarks. In this study we extend the scope and objects
can be landmarks, events or other concepts of interest that are positionable in a specific
place. One promising source of information is the crowdsourced data available from so-
cial multimedia applications, such as Flickr, Picasa and YouTube, where the semantics
of images/videos can be acquired by analysing the user-generated tags. Helpfully, the
semantics extend beyond the geospatial domain. For example, we retrieved the first
20, 000 images sorted by popularity in the Marina Bay area of Singapore from Flickr
and collected their associated tags. Table I lists the top 30 tags and their correspond-
ing semantics, including place, time, event, camera parameters, etc. Meanwhile, these

1www.openstreetmap.org
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applications support multimedia positioning, that is, images/videos can be assigned a
geo-coordinate (or geo-tag). Hence, with images/videos acting as the intermediary, tags
and geo-coordinates are correlated. This raises the potential that we can discover some
tags which are strongly correlated with a specific place. Moreover, the visibility of so-
cial tags can be sensitive to time as well (e.g., event tags), which means they are not
applicable to videos that recorded the same place but at different times. This raises the
need for us to consider the coverage of a tag in both the spatial and temporal domains.

The data from social multimedia websites is not as organized as that from geo-
information systems, and much of the data are not relevant. To solve this problem,
we propose to build a spatiotemporal tag repository that can be directly applied to our
auto-annotation system, by utilizing the data available from social multimedia appli-
cations. As illustrated in Fig. 1(b), we collect the tags, the geo-location, and the times-
tamp associated with multimedia objects. To determine whether a tag is positionable
or not, we describe its geographic distribution by a Gaussian mixture model, based on
which a classifier is built. Next, we extend the repository into the temporal dimension
by predicting the periodicity of each tag. Lastly, we estimate the tag popularity and
geographic bias, and integrate these two criteria into the tag relevance ranking. In the
next section, we will introduce the methods we adopted to build such a tag repository
which is both spatially and temporally indexed (e.g., see Fig. 4) by making use of social
multimedia applications.

4. POSITIONING SOCIAL TAGS IN THE SPATIO-TEMPORAL DOMAIN

We introduce our approach to make use of social multimedia applications to build a
data source of positionable tags, and determine their effective period. First we need
to retrieve data from a particular social multimedia information source. In this study,
we demonstrate the approach with Flickr. Nevertheless, the method can easily be ex-
tended to other similar applications such as Picasa and YouTube, assuming that the
applications contain multimedia content associated with tags and geo-coordinates. The
retrieved data is a collection of multimedia objects, which is formally described as
M = {mi|i = 1, 2, . . . , k}. We let tags(m), geo(m) and time(m), respectively, represent
the associated tags, the geo-coordinates and the recording time of the object m.

Next, we denote the tag collection of this set of photos with T =
⋃

∀m∈M tags(m),

and all the images where a tag τ ∈ T appears as M(τ) = {m|τ ∈ tags(m), ∀m ∈
M}. Consequently, all the geo-coordinates related to a tag can be expressed as G(τ) =
⋃

∀m∈M(τ) geo(m), and all the recording times can be similarly formulated as T (τ) =
⋃

∀m∈M(τ) time(m).

4.1. Geographically Positioning Social Tags

Importantly, we need to formally define the concept of a positionable tag, which is a
tag that is strongly correlated to some location at street level accuracy. There are two
requirements for this. Being strongly correlated indicates that the tag needs to fre-
quently occur in some places but not elsewhere, while reaching street level resolution
makes sure that the accuracy level of the location of the tag matches that of our view-
able scene model, which is on the order of hundreds of meters. However, not all the
tags can meet these two requirements. In Table I, the place tags with a “‡” mark are
so general that the distributions of their geo-coordinates tend to be relatively uniform.
On the other hand, the place tags with a “†” mark are sure to occur more frequently in
some places, but the granularity of the places is too coarse to be comparable with our
viewable scene model. Note that not just place tags can be positionable. For example,
the street course of f1, which means the Formula One automobile race, is well defined.
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Table I. 30 most popular Flickr tags in the Marina Bay area of Sin-
gapore and their corresponding semantics.

1 – 15 16 – 30
tag semantics tag semantics

singapore place† film other
f1 event ndp09 event

marina bay place ndpeeps event
night time bw other
asia place† 2008 time

canon camera skyline other
esplanade place formula 1 event

city place‡ kodak camera
marina bay sands place analogue other

marina place‡ travel other
geotagged other analog other

bay place‡ black other
nikon camera architecture other
street place‡ 2009 time
2010 time river place‡
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Fig. 5. Illustration of the global distribution of the geo-coordinates of tag f1.

Therefore, the first challenge is to determine whether a tag is positionable, and if it is,
where the tag is positioned.

To solve this problem, we build a model to describe the distribution of the geo-
coordinates of a tag, and leverage the expectation maximization algorithm [Dempster
et al. 1977] to estimate its parameters. This step is considered as a dimension reduc-
tion to some extent. Next, we extract two features from the distribution model and use
them to build a classifier to determine whether the tag can be positioned into our area
of interest (AOI). Note that since a tag can be positioned anywhere, it is not easy to
build a world-wide ground truth to evaluate the performance of our method. Moreover,
in many cases, applications may be only interested in some specific places. Hence we
properly adapt the original challenge to detect a positionable tag in our pre-defined
AOI. In the remainder of this section, we explain the method in detail.

4.1.1. Profiling Tag Distribution. The geo-coordinates of a tag are likely to be unevenly
distributed. Fig. 5 shows an example of the tag f1, where we can observe a number of
hot spots (the points in color), indicating the frequent usage of this tag in these regions.
To identify where the hot spots are, we construct a high-level mathematical model
to describe the distribution of geo-coordinates. The basic idea is to replace the geo-
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coordinates with continuous kernel functions to create summary statistics that are less
sensitive to high-frequency noise in the data. Intuitively, for a certain tag τ , each hot
spot can be modeled with a bivariate normal distribution N (µ,Σ), where the mean µ =
E[~g] = (E[lon],E[lat])⊺ and the covariance matrix Σ = E[(~g−E[~g])(g−E[~g])⊺] (superscript
(τ) is omitted for simplicity). Note that a hot spot is not necessary to be as pronounced
as shown in Fig. 5. Assume there are n such normal distributions, and each single geo-
coordinate ~g follows either one with the probability γ, where

∑n
i=1 γi = 1. Hence we

can model the distribution of all the geo-coordinates as the weighted composite of the
n normal distributions, that is,

Pg(~g|~γ, ~µ, ~Σ) =
n
∑

i=1

γiNi(~g|µi,Σi). (1)

However, ~γ, ~µ and ~Σ in Equation (1) are actually unknown variables. We need to es-
timate them from the set of geo-coordinates G that we obtained. From the probability
function, we can derive the likelihood function as

L(~γ, ~µ, ~Σ|G) = Pg(G|~γ, ~µ, ~Σ) =

‖G‖
∏

i=1

Pg(~gi|~γ, ~µ, ~Σ) (2)

or the more convenient log-likelihood function as

l̂(~γ, ~µ, ~Σ|G) =
1

‖G‖

‖G‖
∑

i=1

lnPg(~gi|~γ, ~µ, ~Σ). (3)

Consequently, our target can be formalized as

arg max
~γ,~µ,~Σ

l̂(~γ, ~µ, ~Σ|G). (4)

To find the parameters of our geo-coordinate distribution model that maximize the
likelihood function, we make use of the well established expectation maximization
(EM) algorithm [Dempster et al. 1977]. The EM algorithm is an iterative method: it al-
ternately performs an expectation (E) step, where the expectation of the log-likelihood
is evaluated with the current estimations of the parameters, and a maximization (M)
step, where parameters is computed to maximize the expected log-likelihood found
on the previous E step. One of the issue that has not been clarified is the number of
confederate normal distribution n, which needs to be specified during the execution
of the EM algorithm. Therefore, we additionally recruit a v-fold cross-validation al-
gorithm [EST 2011] to automatically determine how many normal distributions are
required to model the distribution of geo-coordinates. The general idea is to divide the
observed data (or G here) into v folds. The EM algorithm is respectively applied to the v
folds of the training data. The log-likelihood values for all the v folds are averaged into
a single metric to measure the stability of our model. At the beginning, the number of
normal distributions is set to 1. If the average log-likelihood has been increased, we
will correspondingly increment the number of normal distributions by 1 and invoke a
new round of cross-validation.

4.1.2. Building a Positionable Tag Classifier. With the distribution characteristics high-
lighted by the aforementioned model, it is possible to determine whether the tag is
positionable in our pre-defined area of interest (AOI). Intuitively, a tag is considered
positioned at the place where a hot spot emerges, and the mean vector ~µ is conse-
quently regarded as the set of candidate positioning locations. However, not all the hot
spots qualify. As is mentioned earlier, the accuracy of the tag position should reach
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street level, thus the area of the bell-shape of a normal distribution (or the confidence
region Rcr) should be small enough, such that each mean µ decisively approximates a
specific location of the tag. The area can be estimated through the covariance matrix
Σ, that is, Rcr = var(lon) + 2cov(lon, lat) + var(lat). Hence we define the positioning
locations of a tag, denoted by ~µ′, as the ones that are subject to Rcr ≤ πr20 , where r0 is
the threshold of the street-level granularity.

However due to data noise and incompleteness, we found that having one or more
positioning locations can not ensure that a tag is positionable. To address this prob-
lem, we build a binary classifier C, which takes the information of a tag’s positioning
locations as input and outputs 1 if it considers the tag to be positionable in the AOI,
and 0 otherwise. We employ two features to build the classifier. The first feature f1(τ)
is the number of positioning locations in the AOI. By definition, f1(τ) = ‖~µ′ ∩ AOI‖.
The second feature f2(τ) is the sum of the priors of the positioning locations in the
AOI. The prior p is estimated by the Gaussian mixture model. By definition as well,
f2(τ) =

∑

µi∈~µ′∩AOI pi. We observe that some tags have a hot spot in the AOI but are

not widely considered as strongly correlated to the AOI. The reason is that these tags
happened to be frequently used by a small number of users in the AOI, such that
placing the tags there may not make sense to a majority of users. According to the dis-
tribution model, we expect this phenomenon to produce some hot spots with relatively
low priors in the AOI. Therefore, we involve a filter to eliminate this hazard. Finally,
we can obtain a classifier that is formalized as

C~µ′,~p(τ) =

{

1 if f1(τ) ≥ c0 ∧ f2(τ) ≥ p0

0 else
(5)

where c0 and p0 are pre-defined thresholds.
One drawback of the above methodology is the need to heuristically assigned thresh-

olds to both features in Equation (5). To overcome this problem, we can leverage a su-
pervised learning algorithm such as SVM [Cristianini and Shawe-Taylor 2000]. First,
we select a small set of tags and ask experts to determine whether they are position-
able in the AOI. Furthermore, the values of f1(τ) and f2(τ) of this tag set are computed.
Then, we leverage the SVM algorithm to train the classifier Csvm(τ). One pre-requisite
of this method is the availability of an annotated training set. For one or a few AOIs,
the manual effort is probably manageable, however, for hundreds of AOIs or more, it is
too laborious. As a result, if C~µ′,~p(τ) is not obviously inferior to Csvm(τ), we prefer the
former. This comparison will be further discussed in the evaluation section.

Applying the classification, we now retain a set of tags that are considered as being
positionable in the AOI, and denoted as Tp = C(T ). For each retained tag, we store a
tuple 〈tag, spike center(s), area(s) of the confidence regions, location prior(s)〉 into a
database. It is noteworthy that, (1) a tag may have multiple positioning locations in
the AOI according to our classification algorithm, and (2) the database issues are out of
the scope of this paper, e.g., how to properly index the tuples to accelerate range query
processing.

4.1.3. Tag Expansion based on Geo-spatial Feature Similarity. As mentioned at the begin-
ning of Section 4.1, there exist tags that are related to places but are difficult to detect
because of their uniform distribution or their coarse granularity (e.g., bay and garden).
Fortunately, the meaning of a tag is usually delimited by its geo-location. For example,
the tag garden is most likely referring to the Gardens by the Bay if we know that it
was published near Marina Bay, and thus the location distribution of the tags garden
and gardens by the bay should be highly similar in the AOI of Marina Bay. Based on
this observation, we can find the tags that implicitly refer to a specific place by com-
paring their geo-spatial distributions in the AOI with the ones of the positionable tags
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Fig. 6. Illustration of the temporal distribution of the timestamps of tag f1.

detected by our classifier. Those tags are considered to be geographically positionable
as well, and our tag collections are thus further enriched.

Zhang et al. [2012] proposed to compute tag geo-spatial similarity by aggregating
tags into geo-spatial buckets. Here, since we have modeled the distribution of a tag
by a mixture of Gaussians, we adopt the Jensen-Shannon divergence (JSD) which is a
popular method of measuring the similarity between two probability distributions. It
is a symmetrized and smoothed version of the Kullback-Leibler divergence (KLD), and
is defined as:

DJS (P ‖ Q) =
1

2
DKL (P ‖ M) +

1

2
DKL (Q ‖ M) (6)

where P and Q are two distributions and M = 1
2 (P +Q). For distributions P and Q of

a continuous random variable, the KLD is defined to be the integral:

DKL (P ‖ Q) =

∫ ∞

−∞

ln

(

p (x)

q (x)

)

p (x) dx (7)

where p (x) and q (x) denote the densities of P and Q. Unfortunately, the KLD between
two Gaussian mixture models is not analytically tractable. Here we estimate the KLD
between two Gaussian mixture models by the Monte-Carlo algorithm [Hershey and
Olsen 2007]. In our system, we utilized the Java library jMEF2 that can create and
manage mixtures of exponential families.

4.2. Temporally Positioning Social Tags

A positionable tag may still not be relevant to some video, even if it is in the coverage
area of the video, because its semantics are not valid for the time when the video was
captured. It is noteworthy that the semantics of such a tag probably refer to an event.
For instance, the tag ndp09 indicates the National Day Parade held in the area of
the Marina Bay on 9 August 2009. While the tag ndp09 is non-repeatable, the usage
of tag f1 spikes once a year, each time when the Formula One Grand Prix is held in
Singapore (e.g., see Fig. 6). Therefore, we must estimate the coverage of a tag not only
in the spatial but also in the temporal domain.

2http://vincentfpgarcia.github.io/jMEF/
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ALGORITHM 1: Social tags’ temporal visible intervals estimation.

Input:
The collection of social tags, T ;
The density-based neighbor’s reachability parameters, ǫ1 := hour,

ǫ2 := day and ǫ3 := month;
The minimum number of points required to form a cluster, minPts;
The threshold parameters, NP , α, CNum and ICI;

Output:

The estimated temporal visible intervals for each tag τ , {I
(τ)
vis};

for each τ ∈ T do
for i := 1 to 3 do

Center, Stddev, noisePerc := DBSCAN(T
(τ)
p , ǫi,MinP ts);

if noisePerc > NP or average(Stddev) > αǫi then continue;
for j := 1 to ‖Center‖ do

t
j

begin = centerj − stddevj

t
j

end = centerj + stddevj
end

I
(τ)
i = {[tjbegin, t

j

end]|j = 1, 2, ..., ‖Center‖}

if ‖I
(τ)
i ‖ = 1 then /* detect events that happened only once */

mark tag τ as a single event;

I
(τ)
vis := I

(τ)
i ;

else if ‖I
(τ)
i ‖ ≥ CNum then /* detect periodic events */

I(n), prob := arithProgressionF itting(I
(τ)
i )

if prob ≥ ICI then
mark tag τ as a periodic event;

I
(τ)
vis := I(n);

end

end
if τ has been marked as an event then break;

end
if τ is not marked as any event then

I
(τ)
vis := any time

end

end

return {I
(τ)
vis};

Currently we only consider the recording times of the photos that are located in the

AOI and denote the time set with T
(τ)
p ⊆ T (τ). Though the data model in the temporal

domain is similar to that in the spatial domain, we prefer to use DBSCAN [Ester et al.
1996] instead of EM because the density is known beforehand. A repeatable event is
expected to occur at a similar hour of different days, or at a similar date/month of dif-
ferent months/years. Therefore, it is very effective to use DBSCAN, which is a density-
based clustering algorithm, to discover the time intervals I(τ) = {i = [tbegin, tend]}
during which the tag τ is visible in the AOI.

Algorithm 1 sketches the overall procedure to determine a tag’s temporal visible
intervals. Specifically, we set the level of density reachability ǫ to hour, day and month,
respectively, and limit the minimal number of timestamps required to form a cluster to
filter small hazard intervals. Next we execute DBSCAN to generate the cluster centers
and the standard deviations based on which we further compute the time intervals at

different granularity I
(τ)
h , I

(τ)
d , and I

(τ)
m . Subsequently, we analyze the statistics of
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each tag from the fine-grained to the coarse-grained level to see if a tag’s visibility
is sensitive to time. We first skip the situations where the timestamps are not well
clustered, i.e., where the percent of the points that are marked as noise is greater than
a threshold NP or where the average standard deviation is α times larger than the
density parameter ǫ. Then, we review the number of clusters generated. If there is
only a single time interval (i.e., ‖I(τ)‖ = 1), we consider that the tag is representing a
single event that is only visible during this time. Otherwise, if the number of clusters
generated is greater than a threshold CNum, we fit I(τ) into an arithmetic progression
I(n). If the fitting achieves a pre-defined confidence interval CII , we determine the tag
to represent a periodic event that is visible during I(0) + k(I(n) − I(n − 1)), k ∈ N. If
a tag is not marked as an event at any granularity, it is considered to be visible at any
time.

5. EXTENSION OF THE AUTO-ANNOTATION APPROACH

Our auto-annotation approach can freely incorporate the positionable tag repository.
We can compute whether the tags are covered by the viewable scenes of a certain video
as used to do it for landmarks. However, we need to extend the visibility computation
by adding one more dimension (i.e., time). We compare the timestamp of our FOVScene
with the temporal visible intervals of the tags. Since determining the visibility of a tag
in the time domain is not very computationally complex, we invoke it before performing
spatial domain testing, where sophisticated geometry computations are more intense.
We make use of the principle location of a tag and assume that its outline is a circle
that is congruent with the confidence region. Afterwards, we search for and score any
qualified tags for the videos. Finally, an ordered list of tags for each sensor-rich video
is obtained. Note that some refinement of the auto-annotation approach may lead to
a better use of a new data source. Since the tags are obtained from social multimedia
applications, crowdsourced data can be leveraged as metrics for tags. These metrics,
such as tag popularity and geographic bias, can serve as the criteria to re-score the
tags. The popularity of a tag can be estimated by the number of authors who use it.
In practice, we select all the multimedia objects in our retrieved data set that are
annotated by a specific tag, count the number of unique author IDs, and store them in
the database. The priors of the positioning locations of a tag, which is computed when
building the Gaussian mixture model, can indicate the tag geographic bias. Next, we
present how to use these two measures to re-score the tag relevance.

Our auto-annotation system first scores the candidate objects based on their visual
relevance to a video. We refer to it as the baseline score, Sb(τ). However, some inherent
characteristics of tags are likely to be missing. For instance, the Esplanade is a famous
landmark in the Marina Bay area of Singapore and one would expect that it attracts
more video captures than other, less known structures. However, our experimental
system did initially not promote the rank of this tag. Fortunately, social multimedia
applications can help to judge the importance of tags. Hence, starting from the baseline
score, we propose a promotion score Sp(τ) to give more credit to important tags.

Recall that the visual relevance of a tag is computed based on the following six crite-
ria: the closeness to the FOVScene center, the distance to the camera location, the hori-
zontally and vertically visible angle ranges, and the horizontally and vertically visible
percentages. Since a tag can have multiple positioning locations in the spatio-temporal
repository we built, we compute the visual relevance score for each of the positioning
locations based on the above six criteria. The baseline score for a tag is subsequently
modified to Sb(τ) =

∑

i piS
i
b(τ), where Si

b(τ) represents the visual relevance of the i-th
positioning location in the AOI and pi is the corresponding location prior. Next, we
compute the promotion score based on the tag popularity which is set to be propor-
tional to the number of authors. Here we prefer widely used tags because they agree
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with the majority of users’ perception and people may be more inclined to use them to
search for images/videos as well. Lastly, we linearly combine these two scores for tag
relevance ranking:

S(τ) = Sb(τ) + ωSp(τ) (8)

where ω scales the promotion score against the baseline score. As a result, the distin-
guishable and important tags are promoted, leading to a more appropriate tag ranking
mechanism.

6. EVALUATION

We choose Flickr to evaluate the performance of the approach for building a position-
able tag repository. The following five AOIs were selected: the Marina Bay in Singa-
pore, the James R. Thompson Center and the Grant Park in Chicago, the Humble
Administrator’s Garden in China and the Todaiji Temple in Japan. Each of the AOIs
was defined as a region of a circle with a radius of 1 km. We compiled the data set from
Flickr with the following steps. First, we used the range search API to retrieve the
first 20, 000 photos taken from 2007 to 2011 in each of the selected AOIs, and ranked
according to their popularity. Then, we extracted all the tags used by these seed pho-
tos. Thereafter, for each tag, we retrieved at most 20, 000 popular photos using it (some
tags may not be used by that many photos), and recorded the photo ID, the author ID,
the geo-coordinates, its accuracy, the recording time and the co-occurrent tags, which
make up the data set. Considering the data noise, we detected and merged duplicate
tags by calculating the Levenshtein distance between tags. In the remaining of this
section, we demonstrate the accuracy of our positionable tag classification, the accu-
racy of tag positioning, and the quality of the generated tags by our auto-annotation
prototype.

6.1. Accuracy of Positionable Tag Classification

To evaluate the performance of our classifier, we selected the 2, 500 most frequently
used tags (500 per AOI) and invited users to judge whether the tags are associated
with a specific place. The tag distributions are modeled as a mixture of Gaussians
using Weka [Hall et al. 2009]. Based on this manually annotated ground truth, we
first trained and evaluated the performance of the SVM-based classifier Csvm. In our
implementation, we used LIBSVM [Chang and Lin 2011] to train the classifier, using
the number of positioning locations in the AOI (i.e., f1(τ)), the sum of the priors of the
positioning locations in the AOI (i.e., f2(τ)) and both features, respectively. Only the
tags’ positioned locations whose confidence region was no larger than the AOI (i.e., r0 ≤
1km) were considered. The tags with the ground truth were randomly divided into two
partitions, that is, a training set and validation set at a rate of 4:1. We ran 40 rounds
of classifier training and validation, and in each round, we randomly re-selected the
training tags to minimize the bias resulting from the training data selection. We use
precision and recall as the metrics to evaluate the effectiveness of the classifier. We
also report the F1 score, F1 = 2 × precision×recall

precision+recall
, as it considers both precision and

recall.
Table II illustrates the performance of the SVM-based classifier Csvm. In general,

either the number of positioning locations in the AOI or the sum of the location pri-
ors in the AOI is an effective feature, which achieves impressive precision and recall.
Using the two features together achieves the best performance in terms of the F1
score. Additionally, we observe that the standard deviations of precision and recall are
small, indicating that the performance of the classifiers trained by different data sets
is rather stable.
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Table II. Precision, recall and F1 score statistics using
the SVM classifier.

f1(τ) f2(τ) f1(τ) + f2(τ)

Precision mean 0.735 0.862 0.845
Precision std. 0.032 0.028 0.033
Recall mean 0.826 0.709 0.724
Recall std. 0.028 0.034 0.027

F1 Score mean 0.777 0.778 0.780

Table III. Precision, recall and F1 score statistics using the pro-
posed classifier by thresholding.

accuracy level >= 1 accuracy level >= 14

Precision 0.846 0.866
Recall 0.707 0.772

F1 Score 0.770 0.816

(a) (b) (c)

Fig. 7. (a) precision, (b) recall and (c) F1 score under different combinations of the number of centers and
the sum of priors thresholds.

Next, we evaluate the classifier C~µ′,~p based on heuristics. The thresholds are f1(τ) ≥
1 and f2(τ) ≥ 0.6, with which we obtain a classifier that achieves 0.846 precision and
0.707 recall (see Table III). This indicates that the performance of C~µ′,~p is as good as
that of Csvm, considering the precision-recall metric. Furthermore, we are interested
whether the threshold choice based on our intuition is optimal. Figs. 7(a)–(c) describe
the performance with respect to the precision-recall metrics over different combina-
tions of the thresholds of f1(τ) and f2(τ). Clearly, with an increase of the thresholds,
tags are less likely to be considered positionable, such that the precision increases
while the recall declines. Considering both the precision and the recall, we observe
that the sweet spot is zero or one centers for f1(τ) and a not too large percentage for
f2(τ), where our threshold choices lie. In summary, we can achieve good results with
the simple classifier, and need not rely on the SVM-based one that requires manual
input.

Additionally, we study the impact of the performance of the geo-coordinates on the
classification. In practice, the geo-coordinates associated with a photo in Flickr may
originate from human annotation, or positioning via GPS, cellular base stations or Wi-
Fi access points, etc. Different positioning methods have varying accuracy levels. How-
ever, we restrictively require each tag to be positionable at some place at street-level
accuracy. Therefore, we would expect the accuracy of our classification to be encum-
bered by inaccurate geo-coordinates. Our generic classification approach is blind to the
accuracy level of geo-coordinates, because the information cannot be assumed to be
universally available. Fortunately, Flickr quantifies the accuracy level (from world ∼ 1
to street ∼ 16) and supplies it to API users. Hence, for a subsequent experiment we fil-
tered out the geo-coordinates whose accuracy level is below 14 to form the input of our
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Table IV. F1 scores based on different settings of NP and α.
P
P
P
P
PP

NP
α

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5% 0.55 0.55 0.585 0.585 0.622 0.549 0.536 0.508 0.455
10% 0.651 0.651 0.682 0.682 0.708 0.63 0.61 0.581 0.522
15% 0.651 0.651 0.667 0.667 0.694 0.618 0.6 0.571 0.522
20% 0.636 0.636 0.652 0.652 0.68 0.618 0.6 0.571 0.522

Table V. Illustrations of the estimated social tags’ temporal visibility intervals.

Tags Center Std. Deviation Period isGeoPositionable

f1 Sep. 28 7 days Every Year Yes
2010 Jul. 10, 2010 90 days — No

spring May 1 23 days Every Year No
october Oct. 11 8 days Every Year No

christmas Dec. 29 10 days Every Year No
lollapalooza Aug. 6 2 days Every Year Yes

occupy wall street Oct. 17, 2011 28 days — Yes

wall street† Oct. 15, 2011 7 days — Yes

transformers 3† Aug. 4, 2010 78 days — No

algorithm, and reported the statistics in Table III. By doing so, the classifier achieved
0.866 precision and 0.772 recall with the same threshold settings.

In general, as geotags are collected from crowdsourced media, it is reasonable to
assume that the accuracy level of their majority is relatively high. Moreover, the good
classification results shown in Fig. 7 indicate that our method is capable of filtering
out inaccurate data to a certain extent and reflecting the properties of the majority. As
pointed out by Hauff [Hauff 2013], the positional accuracy of the geotag information
of Flickr images is highly dependent on the popularity of a landmark. The average
distance to the ground truth location is between 11 to 13 meters for images taken at
popular landmarks, which is small compared to the size of the viewable scene model
we consider.

Next we evaluate the estimation of tags’ temporal visibility intervals. We manually
annotated tags based on whether they are temporally sensitive or not, and evaluated
the effectiveness of Algorithm 1 as a two-class classifier. The dataset was divided into
two subsets of equal size, working as the training set and test set, respectively. Now
let us recall the input parameters required by the algorithm. minPts denotes the mini-
mum number of points to form a cluster. NP and α are thresholds to skip the situations
where the timestamps are not well clustered. CNum and ICI are parameters for peri-
odic events detection. We set minPts = 10, CNum = 4, and ICI = 0.9 heuristically, and
then tuned NP and α through experiments with the training set. Table IV lists the F1
scores based on different combinations of NP and α values. As shown, the F1 score
reaches its maximum when NP = 10% and α = 3, and then decreases on all sides.
Therefore, we selected this point as the optimal setting and achieved 0.863 precision
and 0.704 recall on the test set. Table V shows some examples of the temporally sen-
sitive tags detected by our algorithm together with the estimated center and standard
deviation of their visibility intervals. In general the results are promising. As illus-
trated, the method is capable of detecting not only the names of single/annual events,
but also the tags indicating the time (e.g., month, season, or even year). The last two
tags marked by “†” in Table V are examples of false positives generated by our algo-
rithm. Though such tags are usually considered to be visible at all times, on occasion
they can be closely related to an event as well. The tag wall street is associated with
the Occupy Wall Street movement which staged a protest event that happened in New
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Fig. 8. Cumulative distribution function (CDF) of the distances between the estimated and the real posi-
tions.

York City’s Wall Street financial district3 and the tag transformers 3 is associated with
the filming of the movie “Transformers 3” in Chicago, in 2010. It is difficult to recog-
nize such situations and therefore the algorithm marked them as events as well. We
further examined the temporal sensitive tags that were not easily detected and found
they mainly included two types: the ones whose deviation was much larger than the
density (e.g., day, evening and 2011) and the ones that are ambiguous (e.g., march).

6.2. Accuracy of Tag Positioning

In the tag classification step, our classifier selected 412 positionable tags that were
used for the following evaluation. Recall that we adopt the location of the hot spot
covering the highest percentage of geo-coordinates as the principle location of a po-
sitionable tag. This location is further used by our auto-annotation approach to con-
duct geometry computations and determine the coverage of the tag by a specific video.
Therefore, we need to determine whether the estimated locations are accurate enough.
Though the classification step ensures that tags are positioned at some locations with
street-level accuracy, we need to check whether they are positioned at the locations
where they are semantically supposed to belong.

Usually, it is difficult to decide what the correct location of a tag is, except when
the tag represents a landmark. We obtained the locations of 41 such positionable tags
from Google Map, Wikipedia, etc., to serve as the ground truth, and then computed the
distance between the ground truth and our estimated locations. In general, the mean
distance is 202 m while the standard deviation is 207 m. In detail, Fig. 8 shows the
cumulative distribution function of the distances, which are not uniformly distributed.
More than 50% of the distances are shorter than 100 m. The absolute values would
seem to be still acceptable since the scale of these landmarks is usually at the level of
hundreds of meters, and the camera may not be still, but pan across a region.

6.3. Tag Expansion and Ranking

Based on the positionable tags detected by the classifier, we first carried out tag ex-
pansion and then supplied these positionable tags to our auto-annotation framework,
which was equipped with the new features introduced in Section 5. To verify the tag

3The actual event that triggered the hot spot of the tag wall street in Chicago is the Occupy Chicago collab-
oration which began on 24 September 2011, in solidarity with the Occupy Wall Street protests.
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Table VI. Precision comparison of tag expansion based on the true positionable tags geotagst
and the automatically detected positionable tags geotagsd.

JSD 0.05 0.1 0.15 0.2

Tag expansion based on geotagst 0.815 0.829 0.714 0.632
Tag expansion based on geotagsd 0.714 0.778 0.654 0.633

Table VII. Illustrations of tag expansion. The tag detected is listed to-
gether with its nearest positionable neighbor and the Jensen-Shannon
divergence between them.

Tag NN JSD

occupy nato summit 0.0106
protests occupy chicago 0.0161
sands mbs (marina bay sands) 0.0351

skyscraper downtown chicago 0.0521
bay marina bay sands 0.0537

downtown downtown chicago 0.0700
skyway supertree 0.0949
fountain grant park 0.0989

bean attplaza 0.1376
cloud forest gardens by the bay 0.1507

expansion approach, we compute the precisions under different threshold settings and
report the statistics in Table VI. The first row lists the results computed based on
the true positionable tags that were manually labeled as the ground truth. To elim-
inate manual work, we carried out the tag expansion based on the positionable tags
that were automatically detected, and report the precisions in the second row. As can
be seen, both of them achieve the highest precision when the threshold is set to 0.1.
Due to error accumulations, the precisions decreased slightly when we utilized the au-
tomatically detected positionable tags. Fortunately, the probability that two random
tags are similar in geospatial distribution is low. Compared with the precision of the
positionable tag classifier which is 0.846 as reported in Section 6.1, the tag expansion
precision 0.778 is compatible and thus can be integrated into our system. Table VII
shows some examples of the tags that were expanded.

Fig. 9 shows two canonical sensor-rich videos we previously captured and the gen-
erated tags for each based on different datasets. The recording locations of the video
clips were the Marina Bay in Singapore and the Grant Park in Chicago, respectively.
For comparison purposes, the first row lists the tags generated using the information
extracted from OSM only. The second row of results are generated from the geograph-
ically positionable tags that we detected by applying tag classification and expansion.
We can observe that the tags in the first row look long, formal and are completely
spelled out. In contrast, tags in the second row originate from the Flickr dataset and
are more concise and casual. By taking the tags’ temporal visibility into considera-
tion, we were able to remove the tags of the National Day Parade and the F1 Grand
Prix from the video clip taken near Marina Bay while keeping the tags of the NATO
Summit and the Chicago NATO protests for the one taken in Chicago.

To evaluate the effectiveness of our proposed technique, we carried out a user study
to capture user preferences regarding the annotation results. We selected ten video
clips from different regions around the world. Without loss of generality, we used only
the top ten tags generated based on different datasets. 22 volunteers who are familiar
with the regions where the videos were taken participated in this user study. They
were requested to watch each video carefully and score the tag set based on the fol-
lowing two criteria: (1) the relevance of the generated tags (1 – least, 10 – most), and
(2) the diversity of the generated tags (1 – least, 10 – most). Figure 10 shows the re-
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OSM dataset Flower Dome, Silver Garden, Marina Bay Sands (Sands SkyPark), Marina Bay Sands, 

Marina Bay Sands Tower 2, Indian Garden, Dragonfly Lake, The Canopy, Marina Bay 

Sands Tower 1, Marina Bay Sands Tower 3 

 

Flickr dataset Marina Bay Sands, Botanical Tower, Marina Bay Reservoir, Marina Bay Gardens,  

Singapore, Gardens by the Bay, Flower Dome, Marina Bay, Dragonfly, Singapore Flyer 

 

 

OSM dataset Grant Park, Chicago Hilton & Towers, Renaissance Blackstone Hotel – Marriott, 

Columbia College Chicago South Campus Building, Columbia College Chicago 618 S., 

Michigan Building, Buddy Guy's Legends, Spertus Institute of Jewish Studies, Jones 

College Prep, Columbia College Chicago Plymouth Court 

Flickr dataset Spertus Institute, Grant Park, Auditorium Theatre, Hilton Chicago, Merle Reskin Theatre, 

Spertus, NATO Summit, Chicago NATO Protests, Congress Plaza, Chicago Loop. 

 

 

Fig. 9. Illustration of snapshots of sample videos. The top tags are generated with the proposed auto-
tagging system based on different datasets.
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Fig. 10. Comparison of (a) relevance and (b) diversity of the tags generated based on different datasets.

sults of this user study. As can be seen, the relevance of the tags generated based
on either of the datasets is high. The average relevance score achieved by using the
Flickr dataset is 7.53, which is higher than the score of 7.01 achieved by using the
OSM dataset. The results demonstrate the effectiveness of our proposed techniques to
build the spatio-temporal tag repository. In terms of tag diversity, the improvement
achieved by using the tag repository we built is even higher. The average diversity
scores are 6.35 and 7.55, respectively. As the OpenStreetMap only records landmarks
in the physical world, the semantics of the generated tags are all within the geospa-
tial domain. Comparatively, the tags in the spatio-temporal repository we built are not
limited to the names of geographic objects but can be any tag that is strongly corre-
lated with a specific place (e.g., the name of an event). Additionally, by applying the
tag expansion approach, the semantics of the tags are further enriched. Overall, there
is strong evidence that our adaptation algorithms are effective in generating accurate
tags with more diverse semantics.

7. CONCLUSIONS

In this paper we presented an innovative auto-annotation approach for sensor-rich
videos, and showed how a positionable tag repository extracted from social multimedia
applications can be beneficial. To setup such a repository, we estimated the geographic
distribution model of tags, extracted two features from the model, and built two classi-
fiers to detect positionable tags. Furthermore, we profiled their temporal distributions
to determine their effective durations. To make better use of the repository, we ex-
tended the visibility computation algorithm to the temporal domain, and computed
tag similarity, popularity and geographic bias to re-order the tag list. The excellent
quality of the generated tags with this overall approach has been confirmed through
our evaluation.

In our future work we plan to investigate how to combine tags supplied from het-
erogeneous data sources, extend our approach to Internet-scale, and popularize our
mobile video capturing applications to obtain more sensor-rich videos for evaluation.
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