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Abstract—GPS coordinates are fine-grained location indicators
that are difficult to be effectively utilized by classifiers in geo-
aware applications. Previous GPS encoding methods concentrate
on generating hand-crafted features for small areas of inter-
est. However, many real world applications require a machine
learning model, analogous to the pre-trained ImageNet model
for images, that can efficiently generate semantically-enriched
features for planet-scale GPS coordinates. To address this issue,
we propose a novel two-level grid-based framework, termed
GPS2Vec, which is able to extract geo-aware features in real-time
for locations worldwide. The Earth’s surface is first discretized
by the Universal Transverse Mercator (UTM) coordinate system.
Each UTM zone is then considered as a local area of interest
that is further divided into fine-grained cells to perform the
initial GPS encoding. We train a neural network in each UTM
zone to learn the semantic embeddings from the initial GPS
encoding. The training labels can be automatically derived
from large-scale geotagged documents such as tweets, check-
ins, and images that are available from social sharing platforms.
We conducted comprehensive experiments on three geo-aware
applications, namely place semantic annotation, geotagged image
classification, and next location prediction. Experimental results
demonstrate the effectiveness of our approach, as prediction
accuracy improves significantly based on a simple multi-feature
early fusion strategy with deep neural networks, including both
CNNs and RNNs.

Index Terms—GPS, semantic embedding, neural networks,
geo-aware applications

I. INTRODUCTION

With the ubiquity of sensor-equipped smartphones it is

common that multimedia documents, uploaded to the Internet

from all over the world, have GPS coordinates associated with

them. Such geotags can provide rich contextual information

that is crucial for, e.g., information understanding, document

retrieval, and personalized recommendations [1]–[3]. For in-

stance, a photo of clouds and a photo of a field of snow

can be quite similar in their visual appearances. If a geotag

is available, it could tell us that the photo was taken at a

location where it never snows and so it is more likely to depict
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Fig. 1: Illustration of existing GPS encoding techniques.
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Fig. 2: Illustration of our proposed GPS2Vec approach.

clouds [1]. Despite the significant importance of geotags, pre-

vious research has focused on extracting hand-crafted features

from GPS locations that are tailored for specific applications,

often targeting small areas of interest. A global method that

can handle worldwide geotags is preferred as it can be applied

to both global and regional applications. Conversely, extending

a regional method to global applications is usually difficult.

Moreover, constructing an end-to-end pre-trained model for

geospatial feature extraction would be superior to existing

hand-crafted feature engineering techniques. First, such an

approach can provide a lightweight mobile solution to extract

geo-aware features in real-time for locations worldwide and

second, it would enable a more straightforward fusion between

GPS coordinates and features from other modalities (e.g.,

visual and textual features) in machine learning applications.

Figure 1 illustrates the existing two types of GPS encod-

ing techniques which both generate manually crafted GPS

embeddings in small areas of interest. The first type, as

shown in Figure 1, is the OneHot encoding approach [4].

This type typically segments the 2D space into grid cells, thus

recording into which cell each GPS coordinate falls into. These

methods have been widely adopted due to their simplicity.

However, they do not encode any semantic information of

the locations and only work well for small areas of interest.

A difference of one degree in latitude or longitude at the

equator equals approximately 110 km. Therefore, segmenting
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Fig. 3: The system overview of our proposed GPS semantic feature extraction and its use in location-aware applications.

the entire planet with a coarse-grained grid of 0.1◦ × 0.1◦

cells (i.e., a cell length at the equator of approximately 11

km) would result in a large 1800 × 3600 encoding. This

would be significantly larger than the common input size of

neural networks, e.g., 224 × 224 pixels for images, and this

might exhaust computational resources such as system or GPU

memory.

The second type of GPS encoding technique uses sup-

plementary data. Such additional data refers to large-scale

datasets of geotagged documents or objects, from which we

can extract surrounding information of a given GPS coor-

dinate. For example, Joshi and Luo [5] proposed to utilize

GeoNames [6] to retrieve nearby place entities at a specific

location. Tang et al. [1] proposed to utilize geotagged images

to extract both hashtag and visual context features for locations

within the United States. To encode a GPS coordinate, these

methods perform a nearest neighbor search to obtain a list

of nearby objects from the supplementary data, from which

a semantic vector is generated as the GPS representation.

Though spatial indexing methods such as the KD-tree and

the ball-tree [7] can be adopted to perform real-time spatial

queries in 2D space, their efficiency declines when handling

high dimensional features in the visual space [2]. Moreover,

GPS encoding still relies on the supplementary dataset even

with spatial indexing. To encode worldwide locations, the

supplementary dataset must densely cover the whole world.

The costs to maintain such a large-scale dataset are prohibitive.

For mobile applications, the system efficiency will be further

degraded by network communication delays between mobile

devices and a server.

To address these issues we present our novel lightweight

GPS2Vec approach which is able to extract geo-aware seman-

tic features in real-time during inference for large-scale areas

without dependence on supplementary datasets. As shown in

Figure 2, we first propose a two-level soft encoding approach

to extend the idea of one hot encoding to work smoothly with

worldwide locations. Next, we use the semantic information

extracted from supplementary data as labels to train neural

networks that map the initial soft encoding (input) to a

semantically-enriched encoding (output). We refer to these

neural networks as the SupData-based semantically-enriched

models. These models need to be trained only once for them

to capture and summarize the semantic information of the

supplementary data. Thus they can be used as a replacement

to generate semantically-enriched GPS encodings. Moreover,

our proposed models are lightweight and can be deployed in

mobile devices, which enables true real-time response even

without Internet connection.

Figure 3 illustrates the overall architecture of our system.

For our method to handle GPS coordinates worldwide, we

introduce a two-level grid-based approach to strike a balance

between information loss and computation cost. On the first

level, we adopt the Universal Transverse Mercator (UTM)

coordinate system to divide the Earth’s surface into 60 lon-

gitude zones and 20 latitude bands. On the second level, we

encode GPS coordinates into grid-based features and train a

neural network to learn the semantic embeddings separately

in each UTM zone. While one hot encoding is widely used in

previous work [1], [4], we present a new soft GPS encoding

method that relaxes the requirements on the cell size, and

thus is able to generate descriptive encoding features using

a grid with fewer cells. As choice for the supplementary

data source we can utilize any large-scale geotagged dataset

such as tweets, check-ins, or images that are available from

social media sharing platforms. Given a specific location, we

generate a normalized histogram in its vicinity by calculating

the weighted sum of the semantic words in a pre-defined

vocabulary. For example, semantic words can be keywords

in tweets, user tags associated with Flickr images, or venue

types in Foursquare check-ins. Intuitively, we aim to use neural

networks to predict the distribution of semantic words at a

specific location, which can be a good semantically-enriched

representation for GPS coordinates. The key contributions of

this work are summarized as follows:

• We present the first machine-learning-based lightweight

solution that generates semantically-enriched embeddings
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for worldwide GPS coordinates. It achieves real-time

responses with minimal computational resources that can

be easily satisfied on mobile devices.

• We propose a novel two-level grid-based approach to

learn global GPS semantic embeddings. Considering the

surface area of the Earth, earlier methods have struggled

to achieve a balance between computational cost and

information loss during GPS encoding.

• The GPS2Vec models, once trained on supplementary

data, can be used as pre-trained models for feature

extraction from GPS coordinates. Transfer learning can

be applied even when the domain of the supplementary

data is different from that of an application.

• Extensive experiments have been conducted on place

semantic labeling, image classification, and next location

prediction. Our method significantly improves the predic-

tion accuracy, and overall provides new insights into the

challenges and opportunities in GPS encoding tasks.

The rest of this paper is organized as follows. Section II

reports important related work. Section III introduces our

proposed GPS2Vec system framework. Section IV presents the

utilization of our GPS semantic embeddings in three location-

aware applications. Experimental comparisons with state-of-

the-art methods are reported in Section V. Finally, Section VI

concludes and suggests future work.

II. RELATED WORK

Geo-clustering and Geo-filtering: With the ubiquity of

sensor-equipped cellphones, it is common for multimedia

documents such as tweets and images posted on the Internet

to be associated with GPS coordinates (i.e., latitude and

longitude) [8], [9]. The availability of geo-location context has

opened up new opportunities in a variety of applications such

as landmark recognition [10]–[12], image classification [1],

[2], semantic annotation [13], [14], etc. The early utilization

of geo-location context associated with documents can be

roughly classified into the following two scenarios: geo-

clustering and geo-filtering. These methods compute and lever-

age the geographical distance between documents calculated

based on their associated geotags, rather than analysing the

geotags directly. For example, Zheng et al. [10] proposed

to discover landmarks worldwide by first performing geo-

clustering. Moxley et al. [15] proposed to annotate an image

based on its k-nearest geo neighbors. Kleban et al. [16] further

proposed to weigh the geo neighbors of an image based on

their visual similarity.

GPS Encoding without Supplementary Data: Since a

GPS coordinate is a tuple of only two values, namely latitude

and longitude, its integration with existing high dimensional

textual and visual features in geo-based application is difficult.

In recent years, several efforts have attempted to encode GPS

coordinates at the feature level based on one hot encoding [1],

[17]. Tang et al. [1] proposed to divide an area of interest

(AOI) into 25×25 km2 square cells and construct an indicator

vector that records into which grid cell a GPS coordinate

falls. Yao et al. [17] further proposed to transform the sparse

indicator vector into a dense embedding vector by introducing

an embedding layer in their system architecture. However, the

number of cells to encode GPS coordinates is always limited

by the computational cost and memory. In an extreme example,

geotagged documents are spread all over the world [4]. The

authors adopted UTM zones for GPS encoding, resulting in

significant information loss, as the granularity of UTM is too

coarse.

GPS Encoding with Supplementary Data (Regional):

When supplementary data sources are available, it is possible

to encode GPS coordinates into feature vectors with seman-

tics. However, under many circumstances, such a geotagged

supplementary dataset is only available in a limited number

of regions around the world [1], [18]. For example, Tang et

al. [1] proposed to extract geographic map features and ACS

features for a given GPS coordinate using Google Maps [19]

and American Community Survey (ACS) [20], respectively.

Joshi and Luo [5] proposed to encode GPS coordinates by

retrieving nearby place entities from GeoNames [6], which

is a freely available geographic information system (GIS)

database. Recently, Spruyt [21] presented a triplet network to

learn a metric space that captures semantic similarity between

different geographic location coordinates. Given a location and

a radius, they queried their GIS database to obtain a large set

of geographic information, and then rasterized it into image

tiles for the triplet network training. As mentioned earlier, one

major drawback of these approaches lies in their difficulties

to generalize to worldwide applications, due to the limited

availability of the required supplementary data sources in less

populous areas around the world.

GPS Encoding with Supplementary Data (Global): One

promising data source to generate worldwide GPS embed-

dings can be large-scale user generated and geotagged docu-

ments that are available online (e.g., check-ins, images, and

tweets) [22], [23]. Towards this direction, Liao et al. [2]

proposed to extract geo-aware tag features by tag propagation

from both the geo and visual neighbors of a given geotagged

image. Tang et al. [1] proposed a hashtag context feature

by capturing the distribution of hashtags associated with

Instagram images in the vicinity of a given image. However,

the aforementioned methods are tailored for geotagged image

classification only. Moreover, it is time-consuming to query

geo and visual neighbors from a large collection of supple-

mentary images, which significantly hinders the use of such

methods in real-time applications.

Image Geolocalization: Image geolocalization aims to

predict the geotag of an image either by matching it to a

large-scale georeferenced image dataset [24] or by directly

classifying it to a pre-defined set of geographic cells [25].

A key component of image geolocalization is to model the

distance between the query image and worldwide locations.

To obtain a better distance metric, Salem et al. proposed to

construct a global-scale, dynamic map of visual appearance

attributes using geotagged images [26]. The distance can thus

be computed by comparing the visual attributes of a query

image with the visual attributes of a location predicted by their

model. Similarly, though our GPS2Vec model was originally

designed for geotag encoding, it has the potential to be utilized

to support image geolocalization as well. The distance metric
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could possibly be improved by additionally considering the

difference between the semantic features of a query image and

the semantic features of a location predicted by our model.

Multimodal Feature Fusion: The semantic embedding

features extracted from GPS coordinates aim to capture high-

level semantics that are complementary to the raw GPS coor-

dinates and the existing textual/visual descriptors. Therefore,

multimodal fusion techniques can be applied to obtain perfor-

mance gains by combining different types of features [27]. To

incorporate location features into existing neural networks, a

concatenation layer is usually introduced to combine multiple

features before passing them to a fusion network for more

robust predictions [1]. More advanced fusion techniques, e.g.,

bilinear CNN models [28] and multiplicative fusion meth-

ods [29], have also been proposed recently and significant

improvements were reported.

III. LEARNING WORLDWIDE GPS SEMANTIC

EMBEDDINGS

We propose a general solution that encodes a GPS coordi-

nate into a semantic descriptor based on a neural network (NN)

and is capable of handling locations worldwide rather than

focusing on specific small areas of interest. Leveraging neural

networks enables the extraction of GPS semantic embeddings

in real-time. More importantly, our generated GPS semantic

embeddings can easily be applied in a variety of location-

aware applications to obtain significant performance gains.

Next, we introduce the technical details of our proposed

approach in the rest of this section and discuss its use in three

location-aware applications in Section IV.

A. GPS Initial Encoding

It is difficult to directly use GPS coordinates as inputs to a

neural network. Therefore, we transform the low-dimensional

GPS coordinates into high-dimensional distributed vector rep-

resentations before passing them to our proposed neural net-

work to learn the semantic embeddings [30]. Additionally,

none of the existing GPS encoding methods have ever been

investigated for or extended to deal with locations worldwide.

Thus we present a novel two-level grid based GPS encoding

approach. On the first level, we adopt the Universal Transverse

Mercator (UTM) coordinate system and divide the Earth into

60 longitude zones and 20 latitude bands. Each UTM zone is

referenced by a longitudinal zone number (i.e., 1 to 60) and

a latitudinal zone letter (i.e., C to X, omitting O). A location

in a zone is represented by the projected easting and northing

planar coordinate pair. Considering that the granularity of the

UTM zones might be too coarse, we further divide each zone

into m×m grid cells on the second level to perform the initial

GPS encoding. Formally, let Z = {gij |i, j = 1, 2, ...,m}
denote the set of cells in zone Z . Let cij = (xij , yij) denote

the center UTM coordinate of cell gij . Then for any GPS

coordinate in the same zone Z , we first represent it by the

corresponding UTM coordinate l = (x, y). Next, we compute

its initial encoding El = {elij |i, j = 1, 2, ...,m} as,

elij = exp(−
‖l − cij‖2

σ
) (1)

where ‖l − cij‖ denotes the Euclidean distance between the

UTM coordinates l and cij , and σ represents a constant

attenuation coefficient.

Existing grid-based GPS encoding methods mostly use a

one-level grid to construct an indicator vector that records

which grid cell a GPS coordinate falls into, resulting in a

sparse feature vector with only one entry set to 1 [1], [4],

[17]. The grid granularity is required to be very fine in order

to reduce the information loss as GPS coordinates that fall

into the same cell will be assigned the same encoding feature.

When it comes to the scale of the entire planet, the use

of a single grid level may result in great information loss

as the number of cells is always limited by the system’s

computational resources. Comparatively, our approach pro-

cesses each UTM zone individually by introducing a second

grid level to improve the system’s scalability. The advantages

of our proposed two-level grid-based GPS encoding method

are twofold. First, multiple models can be more efficiently

retrieved and updated locally in each UTM zone compared

to a single model representing the entire planet. Second, the

information loss during GPS encoding is majorly controlled

by the cell size of the second-level grid. Therefore, the choice

of the first-level grid in our method has more flexibility in

terms of its granularity. Here we adopt the UTM coordinate

system as the first-level grid, for ease of converting a latitude

and longitude pair into a planar coordinate in meters. Other

projection models such as the ECEF (Earth-centered Earth-

fixed) [31] and Google’s S2 geometry [25] can be adopted,

but we choose UTM as it is a grid-based projection that is

widely used in many geo-based applications [4].

Moreover, our soft encoding approach using Eq. 1 can better

discriminate GPS coordinates since the distance ‖l − cij‖ is

more sensitive to the location change in the corresponding

UTM coordinate l. With a proper setting of σ, we are able

to generate a dense encoding El with few zero entries,

leading to effective learning by the neural network presented

in Section III-C. Later in the experiments, we will demonstrate

that representative semantic embeddings can be extracted by

neural networks from the initial GPS encoding generated with

a simple 20× 20 grid in each UTM zone.

B. Vocabulary-based Semantic Feature

Given GPS coordinates’ initial encoding features, we aim

to learn GPS semantic embeddings based on neural networks.

The labels for training can be automatically generated by

extracting semantic contexts from supplementary data sources

such as Flickr, Twitter, and Foursquare. Formally, let V =
{t1, t2, ..., tn} denote a vocabulary consisting of n words.

The construction of vocabulary V will be discussed in Sec-

tion III-D. Our goal is to automatically generate a vocabulary-

based feature for a GPS coordinate based on vocabulary V .

The resulting n-dimensional feature, denoted as Sl = {sli|i =
1, 2, ..., n}, will be used as a set of labels for the training of

the neural networks.

Let o be a multimedia document in the supplementary

dataset, and l(o) and T (o) be the geotag and semantic words

associated with sample o, respectively. For example, T (o) can
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be the user tags associated with an image, the texts of a tweet,

or the venue type in a check-in record where o is an image, a

tweet, or a check-in record, respectively. For each multimedia

document, we compute its semantic encoding S(o) based on

vocabulary V as,

si(o) =

{

1 ti ∈ T (o)
0 ti /∈ T (o)

(2)

where si(o) is the i-th element in vector S(o). This semantic

encoding can be quite sensitive to both GPS noise and seman-

tic keyword uncertainty, and therefore cannot be directly used

as the vocabulary-based semantic feature. For instance, images

that are geographically close to each other can sometimes have

completely different user tags. This can be caused by human

mistakes, or more commonly by the difference between the

image content location and the camera location. To reduce

noise, we smooth the geographic distribution of semantic

words by taking the geo neighbors into consideration as well.

Given a location l, we first retrieve the k-nearest geo neighbors

NN(l) of location l from the geotagged supplementary dataset

in terms of the geographic distance. Next, we compute the

weighted sum of the semantic encodings in the geo neighbor-

hood,

s̃li =
∑

o∈NN(l)

wl
i(o) · si(o) (3)

and apply l1 normalization to obtain our vocabulary-based

semantic feature Sl

sli =
s̃li

∑

j s̃
l
j

(4)

where j iterates over the words in the vocabulary V , and sli
represents the i-th element in Sl.

Weight wl
i(o) is formulated based on the geographic dis-

tance between locations l and l(o) as [2],

wl
i(o) = exp(−

‖l − l(o)‖2
σw

) (5)

where ‖l − l(o)‖2 computes the Euclidean distance between

the UTM coordinates l and l(o), and σw is a constant attenu-

ation coefficient.

The generated feature vector Sl captures the distribution of

semantic words around location l, which provides rich con-

textual information about events that occur in the real world.

The l1 normalization is applied to reduce the impact caused

by the unbalanced geographic distribution of the geotagged

documents.

C. Neural Network Architecture

In each UTM zone we propose to train a neural network,

which is able to transform the GPS initial encoding (introduced

in Section III-A) into the vocabulary-based semantic feature

(introduced in Section III-B). We map the zone-level GPS

initial encodings into the shared global semantic embeddings

by training separate models in each UTM zone. It is notewor-

thy that though the GPS coordinates in different UTM zones

may have the same initial encodings, the extracted semantic

embeddings will be different as they will be processed by

Fig. 4: Illustration of the proposed neural network for GPS

semantic encoding.

different neural networks. Compared with traditional unsu-

pervised methods, the advantages of our proposed machine

based solution are twofold. First, our method divides the GPS

encoding into two stages: offline training and online extraction.

The offline training executes time-consuming nearest neighbor

queries from large-scale supplementary datasets, while online

extraction generates GPS semantic embeddings in real-time

using only pre-trained models. Second, we adopt a relatively

simple neural network architecture to prevent overfitting, based

on experiments, which makes our solution more robust than

unsupervised methods to both GPS noise and semantic key-

word uncertainty. Though multiple models are trained to cover

the entire Earth’s surface, these models can be efficiently

retrieved and updated locally in each UTM zone. The mainte-

nance costs of our pre-trained models are much smaller than

that of the supplementary dataset. Moreover, the inference of

our model is performed simply by passing an input location to

a neural network that outputs the semantic embedding, which

can be executed highly efficiently in milliseconds.

As shown in Figure 4, we adopt a neural network that

consists of three hidden layers and one output layer. A ReLU

(Rectified Linear Unit) activation is applied to each hidden

layer and a softmax activation is applied at the end to transform

the network output into the prediction space. The size of the

three hidden layers are set to 512, 1024, and 2048 neurons

based on experiments. Algorithm 1 illustrates the preparation

of a training dataset from a worldwide supplementary dataset,

and the training of the GPS2Vec models in each UTM zone.

The size of the output layer equals the size of vocabulary V ,

whose construction will be discussed in the next section. The

input to our neural networks is the GPS initial encoding El as

introduced in Section III-A. During learning, we aim to use

the vocabulary-based semantic features Sl as labels to train

our set of neural networks f(El) to estimate the normalized

word frequency in the vicinity of location l. Let θ be the model

parameters to be learned, then the loss function for the network

training is given as,

L(θ) =
∑

l

DKL(S
l||f(El; θ)) (6)

where DKL(P ||Q) =
∑

i Pi log
Pi

Qi
represents the Kullback

Leibler (KL) divergence. As the semantic feature Sl can be in-

terpreted as a distribution of the semantic words in vocabulary

V , the KL divergence, which measures how one probability

distribution is different from another, reference probability
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Algorithm 1: GPS2Vec Model Training

Input: A worldwide large-scale supplementary dataset SupData and a

vocabulary V consisting of n semantic words

Output: Pre-trained GPS2Vec models in each UTM zone

List listE , listS ;

Dictionary models;

for each o, l(o), T (o) in SupData do

/* o is a multimedia document, l(o) and T (o) are

the geo and semantic tags associated with o */

l = l(o);

compute the initial GPS encoding El using Eq. 1;

add El into listE ;

compute the normalized semantic feature Sl using Eq. 4;

add Sl into listS ;

for each utm in UTM zones do

list′
E
, list′

S
=filtering(listE ,listS );

/* filter listE and listS based on locations */

train a neural network model as shown in Fig. 4 with list′
E

being the

input and list′
S

being the output;

models[utm] = model
return models;

Algorithm 2: Semantic Embedding Extraction

Input: GPS2Vec pre-trained models models and a GPS coordinate l

Output: The semantic embedding of the GPS coordinate l

model=select(models,l);

/* select the correct GPS2Vec model representing the

UTM zone that contains location l */

compute the initial GPS encoding El using Eq. 1;

return model(El);

distribution, can be a good choice for the loss function.

During training, we optimize argminθ L(θ) using stochastic

mini-batch gradient descent based on back-propagation with

momentum. The mini-batch size and the momentum were set

to 32 and 0.9, respectively. The learning rate was set to 0.001.

Algorithm 2 illustrates the process of GPS semantic embed-

ding extraction based on our pre-trained GPS2Vec models.

Given a GPS coordinate l, we first compute its initial GPS

encoding El using Eq. 1. Next, we pass El to the correct

GPS2Vec model, selected according to l. Finally, the model

output is returned as the semantic embedding of location l.

D. Vocabulary Construction

Ideally, the vocabulary construction should be application-

specific, as applications in different domains may require dif-

ferent words. For example, Flickr, Twitter, Foursquare, Strava,

etc., record different user activities and therefore depict a place

from inherently different perspectives. In this initial attempt

to learn worldwide GPS semantic embeddings, we start by

building the vocabulary from one data source. Fortunately,

the extension to leverage multiple data sources for embedding

learning is straightforward. For example, multiple vocabularies

can be built with different data sources and the most appro-

priate one can be selected based on the application domain.

Moreover, the embeddings learnt from one data source (e.g.,

images) are also helpful when they are applied to other data

sources (e.g., tweets or check-ins) based on transfer learning.

This is reasonable as correlations exist between words from

different domains. For example, a user tag “beer” associated

with an image may have a high correlation with venues of

type “pub” and “bar”, and a tag “food” tends to appear more

frequently near “restaurants.”

Fig. 5: Geographical distribution of the one million Flickr

images.

By considering both the data availability and application

popularity, for vocabulary construction and semantic embed-

ding learning we chose geotagged images and leveraged the

one million Flickr images collected by Li et al. [22], which

were taken by 145,000 distinct users in over 100 countries.

As seen in Figure 5, this dataset is quite diverse in terms of

its geographical distribution. To ensure that high frequency

tags are included in the semantic embedding learning, we

constructed the vocabulary V by selecting the top 2,000 most

frequent tags in the one million Flickr dataset, excluding stop

words, camera brands, and non English words [2], [32]. Thus,

both the vocabulary-based semantic feature and the output of

our neural network have a dimensionality of 2,000. For feature

normalization, in addition to the l1 norm that we adopted in

Eq. 4, it would also be possible to consider the tag frequency

in the future [1].

One issue of the supplementary dataset that we used in

this study might be the uneven distribution of the geotagged

images. The GPS embeddings generated in regions with only

a few geotagged images can be sparse. Fortunately, when

used in applications, the GPS embeddings will be fused with

features from other modalities such as the visual features in

image classification and the check-in-based features in place

annotation. Thus, locations with sparse embeddings can still

be distinguished based on multi-modal feature fusion.

IV. ENRICHING GEO-APPLICATIONS WITH SEMANTICS

Next we introduce the use of our proposed GPS semantic

embeddings not only in image classification, but also in

place semantic annotation and in next location prediction with

transfer learning.

A. Semantic Annotation of Places

Semantic place annotation refers to the process of assigning

a meaningful name to a location. For example, with GPS data

from government diary studies, the semantic labels may be

“home,” “work,” and “school,” given to geographic locations

where a person spends time [14]. With check-in data collected

from location-based social networking (LBSN) services such

as Foursquare, the semantic labels may be “restaurant,” “ho-

tel,” and “hospital,” given to places of interest (i.e., venues) in

LBSN [13]. Such semantic labels are important for people to



IEEE TRANSACTIONS ON MULTIMEDIA 7

Fig. 6: Integration of our GPS semantic feature with other

application-related features in place annotation and image

classification.

infer activities, explore new places, and develop recommenda-

tion services [33], [34].

The semantic place annotation can be formulated as a multi-

class classification problem based on features generated for

each place. For example, in LBSN, users are likely to behave

differently at different venues due to the nature of the services

and functions offered by these places [13]. Therefore, different

behavior patterns of visitors can be extracted from the check-in

data at each venue to depict the place. Some baseline features

that are proposed in previous work are as follows:

• total number of visits,

• total number of unique visitors,

• maximum number of check-ins by a single visitor,

• distribution of visit time in a week, and

• distribution of visit time in a day.

Such baseline features can be easily integrated with our pro-

posed GPS semantic embeddings that are extracted based on

the geo-coordinates of the places to be labeled. As illustrated

in Figure 6, one way to achieve this goal is to concatenate

different features to form a final feature vector through early

fusion. The concatenated feature vector is next passed to a

multi-class classifier for label prediction. The advantage of this

early fusion strategy not only lies in its effectiveness, but also

its generalization capability to any geo-aware classification

problem with little modifications required.

B. Image Classification with Location Context

Nowadays it is common for online images to be associated

with GPS coordinates, due to the availability of sensor-

equipped smartphones. Such geotags can be leveraged to

obtain rich contextual information that is of great importance

to help predict what is captured in an image. Though several

efforts have been made in this direction, drawbacks exist in

some methods, e.g., tailoring for specific AOIs [1], GPS en-

codings that are computationally expensive [2], and significant

information loss with coarse-grained encodings [4]. Our work

differs in that we are interested in efficient and fine-grained

GPS semantic embeddings extraction that is not tailored to

particular tasks or AOIs. Our method can be applied to a wide

range of geo-aware applications with sufficient performance

gains, in terms of both effectiveness and efficiency, achieved.

Fig. 7: Integration of our GPS semantic feature in the recurrent

model for next location prediction.

The use of our GPS semantic embeddings in image classi-

fication is illustrated in Figure 6. In this case, the baseline

features refer to image visual features varying from hand-

crafted low-level features such as HOG [35] and SIFT [36]

to the most recent CNN-based deep features for object and

scene recognition [37], [38]. Moreover, the class labels can

cover a wide range of concepts without limitations to particular

types of objects and scenes. For the classifier, we adopt a

neural network with one hidden layer of 512 units and one

output layer for both semantic annotation of places and image

classification. Other classifiers such as SVM [39] would also

suffice.

C. Next Location Prediction in Semantic Trajectories

Predicting the next location that a user tends to visit is

a challenging and crucial task for applications such as tour

recommendations and traffic planning [40]. For example, given

a user’s historical check-in data, we may be able to predict

where the user will go next by jointly analyzing multiple fac-

tors including time, location, texts, and user preferences [17].

Recently, Yao et al. [17] proposed a unified framework, termed

SERM, which is capable of jointly learning the embeddings of

the aforementioned multi-factors and the transition parameters

of a recurrent neural network (RNN) for next location pre-

diction. The architecture of their proposed semantics-enriched

recurrent model (SERM) is illustrated in Figure 7. First, one

hot representations are generated for all inputs, where the

category of each factor is defined as follows:

• Time: one hot vector generated based on timestamp by

discretizing one week’s time into 48 equal sized time slots

• Location: one hot vector generated based on location by

discretizing the AOI into a 500 m × 500 m grid

• Text: one hot vector generated based on bag-of-keywords

• User: one hot vector generated based on user id

Next, embedding vectors are generated and concatenated

from one hot representations of time, location, and text to train

a recurrent neural network, and fused with the user embedding

that describes the user preferences, at the RNN’s output layer.

To make use of pre-trained models and reduce RNN training

time, we propose to first train an individual RNN with the same

architecture based on our GPS semantic embeddings, and then

fuse its output with pre-trained SERM for fine-tuning as shown
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TABLE I: Venue categories and their percentages (z%) in the

evaluation dataset.

Category z% Category z%

Restaurant & Food 40.4% Shop 19.8%

Hotel 3.5% Pub & Bar 13.1%

Store 20.7% Hospital 2.5%

in Figure 7. Finally, we derive the probability distribution over

all the locations at each step by applying the softmax function.

In addition to CNN-based models such as the aforementioned

image classification, this application demonstrates the use

of our proposed GPS semantic embeddings in RNN-based

models, and its effectiveness in sequential data modeling.

V. EXPERIMENTS

We first evaluate the effectiveness of our proposed GPS

semantic embeddings learning method in three location-aware

applications. The venue semantic annotation and the geotagged

image classification are global applications based on world-

wide Foursquare check-in records and Flickr images, respec-

tively. The next location prediction is a regional application

based on city-scale semantic trajectory data (i.e., check-ins

and tweets) in New York and Los Angeles. We evaluate our

proposed approach on both global and regional applications

to verify its effectiveness. Throughout the experiments, the

parameter m that controls the grid size in each UTM zone

is set to 20. The attenuation coefficient σ is set to 20 km.

The number of geo neighbors k is set to 150 as suggested by

Liao et al. [2]. We adopt the output of the softmax layer in

our proposed neural network as the generated GPS semantic

embedding. Next, we perform an ablation analysis on the

model parameter settings and discuss their impact in our

proposed framework.

A. Evaluation on Venue Semantic Annotation

1) Experimental Setup: We conduct experiments on a

global-scale check-in dataset collected from Foursquare [41],

[42]. Each check-in records the user id, venue id, visit time,

latitude, longitude, and venue category name. We choose six

popular categories as shown in Table I to form an evaluation

dataset. The semantic labeling of places can be formulated

as a multi-label classification problem. For example, a place

associated with tag “restaurant” can also be annotated with

“bar.” Therefore, we apply sigmoid activation at the output

layer, and choose binary cross-entropy as the loss function.

The network was trained using stochastic mini-batch gradient

descent based on back-propagation. The learning rate and

mini-batch size were set to 0.001 and 32, respectively.

2) Performance Comparison: We adopt the following three

metrics: hamming loss, coverage error, and average precision

as the evaluation metrics. The hamming loss measures the

fraction of labels that are incorrectly predicted, while the

other two metrics measure the ranking performance of the

predictors [43]. The coverage error evaluates how far we need

to travers the ranked list of predicted tags in order to cover all

the ground-truth tags associated with the venue. The average

precision is a measure that combines recall and precision for

TABLE II: Performance comparison on place semantic label-

ing based on GPS embedding, baseline feature (B), and their

fusion.

Method
Hamming

loss
Coverage

error
Average
precision

Baseline [13] 0.159 2.129 0.298
OneHot [4] 0.165 2.235 0.210
HashTag [1] 0.164 2.200 0.249

GPS2Veconehot 0.165 2.224 0.220
GPS2Vec 0.164 2.189 0.243

OneHot [4] + B 0.152 2.045 0.337
HashTag [1] + B 0.153 2.060 0.335

GPS2Veconehot + B 0.151 2.034 0.340
GPS2Vec + B 0.151 2.029 0.344

ranked retrieval venues given a tag, and is computed as the

mean of the precision scores after each ground-truth venue is

retrieved. We extract the five baseline features as introduced

in Section IV-A, and concatenate them into a feature vector,

which we refer to as the baseline feature.

We report the overall hamming loss, coverage error, and

average precision in Table II, with the best result highlighted

in bold, and the place semantic labeling results per venue

category in Figure 8. We compared our GPS2Vec to the

OneHot encoding [4] and the GPS2Veconehot which is a

variation of GPS2Vec by using the one hot encoding instead

of our proposed soft encoding approach in generating the

initial GPS encoding. As is illustrated, GPS2Vec outperforms

OneHot and GPS2Veconehot by 3.3% and 2.3% in terms

of the average precision, respectively. Please note that the

GPS2Vec embeddings are learnt from geotagged images. By

being applied to an application in a different domain (i.e.,

check-in records), our proposed GPS2Vec+B is still able to

achieve the best classification result, outperforming Baseline

and OneHot+B by 4.6% and 0.7% in terms of the average

precision. This indicates that the GPS2Vec embeddings learnt

from one data source have the potential to work reason-

ably well with applications in different domains. Generally

speaking, the baseline features depict different user behavior

patterns at different places in terms of population and temporal

duration. The vocabulary-based GPS2Vec embeddings, on the

other hand, provide contextual information about events that

occur in the real world at each place. The distribution of user

tags in the vicinity can be closely related to the place category.

For example, the tag “beer” can have a high correlation with

places such as pubs and bars, and the tag “food” tends to

appear more frequently near restaurants.

Next, we compare our proposed method to the HashTag

context feature proposed by Tang et al. [1]. Given a GPS coor-

dinate to be encoded, the authors define a set of radii R, and for

each r ∈ R, they pool over a circle of radius r around that GPS

coordinate and count the number of images tagged with tag t
that falls within the radius. We normalize the generated feature

vector and set R = {1, 000, 2, 000, ..., 10, 000} as described

in their original paper. To perform a fair comparison, we

generated a 2,000-D feature by setting the tag collection to be

the top 50 most frequent tags in our one million Flickr dataset.

As shown in Table II, GPS2Vec+B outperforms HashTag+B

by 0.9%. Moreover, the computation of the HashTag context
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Fig. 8: Performance comparison per concept on place semantic labeling based on GPS embedding, baseline feature, and their

fusion.

feature relies on the supplementary Flickr image dataset, while

our proposed method generates GPS semantic embeddings

based on pre-trained models during inference without relying

on any large-scale supplementary dataset.

B. Evaluation on Image Classification

1) Experimental Setup: For image classification, we eval-

uate our method using the NUS-WIDE dataset [44], which is

a benchmark dataset that is widely used for image annotation

and classification. As the location context is required in our

experiments, we use the geotagged images in NUS-WIDE and

form a training set with 41,173 images and a test set with

27,401 images. Ignoring rare concepts, we test on 75 concepts

covering objects, scenes, and events. In terms of the visual

feature, we adopt the BovW representation based on SIFT

descriptors that is used in previous work [2] to make it a fair

comparison.

Since an image is mostly associated with more than one

tag, we formulate this problem as a multi-label classification,

apply sigmoid activation at the output layer, and choose binary

cross-entropy as the loss function. The network was trained

using stochastic mini-batch gradient descent based on back-

propagation. The learning rate and mini-batch size were set to

0.001 and 32, respectively. We report the Average Precision

(AP) per concept, and the mean Average Precision (mAP) as

the evaluation criteria.

2) Performance Comparison: We first compare our pro-

posed method to the state-of-the-art geo-based and fusion-

based image classification systems in Table III with the best

and second best results highlighted. Our GPS2Vec obtained

the best mAP among the geo-based methods. Moreover, the

GPS2Vec+V outperforms the OneHot+V, HashTag+V, and

GPS2Veconehot+V by 6.2%, 3.9%, and 2.3%, respectively.

The results verify the effectiveness of our proposed GPS2Vec

embeddings and its complementarity to image visual features.

When comparing to other fusion approaches, our method

achieves significant improvements over the approaches that

utilize the GPS coordinates in a traditional manner for geo

neighbor search [8], [16], [22]. Wang et al. [32] and Liao et

al. [2] both proposed to fuse a visual classifier with a textual

classifier built upon tag features generated by conjunctively

considering geo and visual neighbors from a supplementary

image dataset. The method proposed by Liao et al. [2] was able

to achieve the best classification result due to the following

reasons. First, this method searches for visual neighbors of

test images, which is tailored for image classification and

cannot be applied to other geo-aware applications. Second,

TABLE III: Comparison with the state-of-the-art location-

aware image classification approaches.

Method Classifier mAP

Visual visual 0.234
OneHot [4] geo 0.066
HashTag [1] geo 0.163

GPS2Veconehot geo 0.130
GPS2Vec geo 0.182

OneHot [4] + V fusion 0.238
HashTag [1] + V fusion 0.261

GPS2Veconehot + V fusion 0.277
GPS2Vec + V fusion 0.300

Kleban et al. [16] fusion 0.080
Qian et al. [8] fusion 0.113
Li et al. [22] fusion 0.251

Wang et al. [32] fusion 0.236
Liao et al. [2] fusion 0.347

TABLE IV: Mean average precision comparison per UTM

zone on image classification based on GPS embedding, visual

feature, and their fusion.

UTM Zones 30U 31U 18T 10S 32T

Visual 0.254 0.238 0.256 0.283 0.291
GPS2Vec 0.166 0.189 0.156 0.197 0.174

GPS2Vec + V 0.293 0.282 0.278 0.351 0.322

the authors leverage a much larger supplementary dataset that

consists of 10 million geotagged images to generate a more

descriptive tag-based feature. Comparatively, our method is

more general, and at the same time, is able to obtain the second

best mean average precision of 0.3 in image classification.

Moreover, our method moves the time-consuming nearest

neighbor queries to the offline training stage, in order to

achieve a real-time response in the testing stage of extracting

semantic embeddings from GPS coordinates.

Next, we compare the average precision per UTM zone

and per concept obtained by different classifiers trained with

GPS semantic embedding (GPS2Vec), image visual feature

(Visual), and their fusion (GPS2Vec+V). The results are illus-

trated in Table IV and Figure 9, respectively. We select the top

five most popular UTM zones based on the number of testing

images each zone contains. Some UTM zones contain areas of

only one country (e.g., 10S is within the United States), while

others contain more than one (e.g., 32T overlaps with multiple

European countries including Italy, Switzerland, and France).

By fusing our proposed GPS2Vec embeddings with image

visual features, a consistent performance gain was observed

among different UTM zones. Similarly in Figure 9, the fusion

method achieves the best average precision with most of the

concepts. The geo method outperformed the visual method in
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Fig. 9: The average precision comparison per concept on image classification based on GPS embedding, visual feature, and

their fusion.

TABLE V: Comparison to the state-of-the-art next location

prediction methods on the New York dataset.

Method HR@1 HR@5 HR@10 HR@20 δd/m

NL 0.1630 0.2455 0.2998 0.4386 2903
MF [45] 0.1690 0.4326 0.5013 0.5358 1963

HMM [46] 0.1763 0.4298 0.5251 0.5518 1952
ST-RNN [40] 0.1942 0.4421 0.5381 0.6053 1602
SERM [17] 0.2535 0.4507 0.5433 0.6237 1457

HashTag + S 0.2575 0.4889 0.6036 0.6861 1253
GPS2Vec + S 0.2716 0.5131 0.6097 0.6841 1193

TABLE VI: Comparison to the state-of-the-art next location

prediction methods on the Los Angeles dataset.

Method HR@1 HR@5 HR@10 HR@20 δd/m

NL 0.3745 0.4516 0.4704 0.4911 6061
MF [45] 0.3646 0.5810 0.6354 0.6877 2647

HMM [46] 0.3921 0.5935 0.6331 0.6732 2521
ST-RNN [40] 0.4311 0.6013 0.6521 0.6980 2384
SERM [17] 0.4625 0.6265 0.6670 0.7026 2177

HashTag + S 0.4625 0.6343 0.6709 0.7055 2154
GPS2Vec + S 0.4654 0.6344 0.6729 0.7036 2135

concepts such as “coral,” “whale,” “surf,” and “temple,” that

are sensitive to locations. For example, “coral,” “whale,” and

“surf” can have a strong correlation with seas and oceans. On

the other hand, the visual method outperforms the geo method

in concepts such as “sun,” “cloud,” “sky,” “grass,” and “tree”

that can be easily recognized based on their visual appearance.

C. Evaluation on Next Location Prediction

1) Experimental Setup: For next location prediction, we

conducted experiments on two semantic trajectory datasets

collected in two cities, namely New York City and Los

Angeles. Records are segmented into semantic trajectories

with a time gap constraint of ∆t = 10 h. Users with fewer

than 50 records and trajectories with a length shorter than three

are removed [17]. After data preprocessing, the New York

dataset [47] consists of 3,103 trajectories from 235 users and

the Los Angeles dataset [48] consists of 7,826 trajectories from

244 users. We apply softmax activation at the output layer,

and choose categorical cross-entropy as the loss function. The

two evaluation datasets are divided into 80%–20% splits for

training and testing. Two metrics are adopted for method

comparison: 1) the hit ratio at k, which examines whether

the ground-truth location appears in the top-k predictions, and

2) the prediction error in the distance, which computes the

minimum geographical distance from the ground-truth location

to the top-5 predictions. We train the network architecture

using stochastic mini-batch gradient descent based on back-

propagation. The learning rate and mini-batch size were set to

0.001 and 200, respectively.

2) Performance Comparison: We compare our method to

SERM, HashTag+S, and four other next location prediction

methods. HashTag+S is a variation of our method GPS2Vec+S

by using the HashTag context feature [1] instead of our

proposed GPS2Vec feature. Here “S” refers to method SERM

as we integrate the proposed GPS2Vec feature into the original

SERM architecture. The results are reported in Tables V

and VI, with the best results highlighted. The NL (Nearest

Location) method chooses the nearest neighbor to the user’s

current location as the prediction. We show it as a straightfor-

ward baseline method for comparison.

As can be seen, our method outperforms its competitors on

both datasets. The MF method casts the location prediction as

a recommendation problem without modeling the transition

of the sequential input. The HMM method considers the

sequential transition but it only models the first-order depen-

dency of the semantic trajectories. Comparatively, RNN-based

methods, ST-RNN and SERM, are capable of capturing long-

term dependencies of people’s movements, and therefore turn

out to be the strongest baseline methods. SERM outperforms

ST-RNN as it captures the spatiotemporal dynamics by jointly

learning the embeddings of location and time. Additionally,

SERM leverages the textual information such as tweets in

its modeling, while ST-RNN only focuses on the next loca-

tion prediction for GPS trajectories without a user’s textual

messages. Next, we compare GPS2Vec and HashTag features

in the next location prediction. As Tables V and VI show,

GPS2Vec+S outperforms HashTag+S on both datasets, which

indicates that the GPS semantic embeddings generated by
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our pre-trained models are more descriptive than the HashTag

context features generated from the supplementary data.

By integrating the GPS semantic embeddings, our method

improves the SERM method in the following two aspects.

First, the vocabulary-based semantic feature extracted from

GPS makes it possible to measure the high-level similarity be-

tween places, which is crucial for the next location prediction

problem. For example, people tend to frequent similar venues

due to personal preferences. This may be one of the reasons

why our method obtained more significant improvements with

the New York check-in dataset compared to the Los Angeles

tweets dataset. Compared with tweets, locations of check-

ins more likely correlate with the semantic similarities of

places. Second, the SERM method encodes locations into

one hot representations by discretizing the area of interest

into 500 m × 500 m grid cells. Comparatively, our GPS

encoding method is able to generate a more generalized and

semantically-enriched representation that can be applied to

locations anywhere in the world.

D. Parameter Tuning

We first study the impact of the grid size controlled by

parameter m for the GPS initial encoding. As mentioned

before, each UTM zone is divided into an m × m grid. Let

m be {10, 20, 30}, respectively. We report the mean average

precision on venue semantic labeling and image classification

in Table VII with the best result highlighted in each row. The

GPS2Vec method uses our GPS semantic embeddings as the

only feature. The GPS2Vec+B method concatenates the GPS

semantic embeddings and the base line features extracted from

the check-in data, while the GPS2Vec+V method concatenates

the GPS semantic embeddings and the image visual features

to train a classifier. As Table VII shows, GPS2Vec obtains

the best mean average precision with m = 30 on both venue

semantic labeling and image classification. Generally speak-

ing, the GPS semantic embeddings tend to be more descriptive

with a smaller grid cell size, i.e., larger m. This is because a

grid with fine granularity has a better resolution to discriminate

GPS coordinates that are located close to each other. However,

with the number of grid cells increasing, the input size of

the neural network will rise quadratically, leading to high

computational costs and delay. On the other hand, GPS2Vec+B

and GPS2Vec+V obtain competitive classification results with

m = 20 and 30, which indicates that the GPS2Vec embeddings

and the baseline/visual features are complementary to each

other so that the influence of the grid cell size on the system

effectiveness has been reduced. We consider that m = 20 can

be a good trade-off, and use this as the optimal setting in the

rest of the experiments.

Next, we study the impact of the attenuation coefficient in

Eq. 1 on the classification results in venue semantic labeling

and image classification. We set σ to 10 km, 20 km, and

30 km, respectively, and report the mean average precision

in Table VIII with the best result highlighted in each row.

As can be seen, all three methods obtain their best mean

average precision with σ = 20 km. The calculation of the

GPS initial encoding is parameterized together by m and

σ. With a moderate-sized grid where m = 20, a small

change in σ is unlikely to have a significant impact on the

classification results. Therefore, we set σ to 20 km throughout

the experiments.

The results shown indicate that our proposed method has the

advantage of not being sensitive to the parameters m and σ
within a large range. This is a good property as the parameters

of our proposed method can be effectively tuned when being

applied to different applications.

E. Ablation Analysis

1) Comparison of layers: We analyze the discriminative

performance of each layer in our proposed neural network.

In the previous experiments, we adopted the output of the

softmax layer in our proposed neural network as the GPS

semantic embedding. However, more generally, the output

of intermediate layers can also be used as GPS semantic

embeddings in downstream applications. We compare the

GPS semantic embeddings extracted from different layers and

report the mean average precision in Table IX. As illustrated

in Figure 4, the feature dimensions extracted from fc1, fc2,

fc3, and output layers are 512, 1,024, 2,048, and 2,000,

respectively. For all three methods, the mean average precision

increases when using features extracted from layers closer

towards the output. Therefore, we adopt the features extracted

from the output layer, which tend to encode more semantic

information, as the GPS semantic embedding in our proposed

framework.

2) Comparison of first-level grid: In our current work, we

have adopted the UTM coordinate system as the first-level

grid, due to its popularity and the ease of converting a latitude

and longitude pair into a planar coordinate in meters. We now

compare it to a density-based grid partitioning method using

Google’s S2 geometry library [25]. More specifically, starting

at the root S2 cell, we recursively descend each quad-tree and

subdivide cells until no cell contains more than 15,000 images.

Subsequently, sparsely populated areas are covered by larger

cells and densely populated areas are covered by finer cells.

We further divide each cell into a 16×16 second-level grid1 for

the GPS initial encoding. The results are reported in Table X.

Recall that m controls the granularity of the second-level grid.

Therefore, m = 16 in Google’s S2 cells causes a slight mAP

decrease compared to m = 20 in UTM zones (please refer

to Table VII). Google’s S2 geometry has the advantage of

partitioning the Earth’s surface into fewer cells in a balanced

way. However, the UTM grid can perform competitively well

in terms of accuracy as long as the model capacity is sufficient

to capture the data characteristics in each zone.

3) Comparison of training sample distribution: In the train-

ing phase of our proposed GPS2Vec method, we use the

geotags of the images in the supplementary dataset as the

training locations in each UTM zone. Table XI shows the

comparison of our sampling strategy to a uniform sampling

strategy where the training samples are evenly distributed in

1As Google’s S2 follows a quadtree partitioning, a second-level grid of
16× 16 is the closest to the one of 20 × 20 used in each UTM zone.
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TABLE VII: Mean average precision comparison on venue semantic labeling and image classification based on GPS semantic

embeddings generated with different grid sizes.

Task Method 10 × 10 20× 20 30× 30

Venue Semantic Labeling
GPS2Vec 0.2349 0.2435 0.2441

GPS2Vec+B 0.3399 0.3435 0.3431

Image Classification
GPS2Vec 0.1754 0.1824 0.1853

GPS2Vec+V 0.2971 0.2999 0.2987

TABLE VIII: Mean average precision comparison on venue semantic labeling and image classification based on GPS semantic

embeddings generated with different σ settings in Eq. 1.

Task Method 10 km 20 km 30 km

Venue Semantic Labeling
GPS2Vec 0.2422 0.2435 0.2405

GPS2Vec+B 0.3408 0.3435 0.3415

Image Classification
GPS2Vec 0.1779 0.1824 0.1747

GPS2Vec+V 0.2947 0.2999 0.2986

TABLE IX: Mean average precision comparison of extracting GPS embeddings at different layers on venue semantic labeling

and image classification.

Task Method fc1 fc2 fc3 output

Venue Semantic Labeling
GPS2Vec 0.2319 0.2332 0.2409 0.2435

GPS2Vec+B 0.3336 0.3341 0.3397 0.3435

Image Classification
GPS2Vec 0.1708 0.1718 0.1762 0.1824

GPS2Vec+V 0.2853 0.2950 0.2960 0.2999

TABLE X: GPS2Vec mAP comparison of first-level grid

choices: UTM zones vs. Google’s S2 cells.

Task UTM Google’s S2

Venue Semantic Labeling 0.243 0.238

Image Classification 0.182 0.179

TABLE XI: GPS2Vec mAP comparison of training sam-

ple distribution: data-driven vs. uniform.

Task data-driven uniform

Venue Semantic Labeling 0.243 0.229

Image Classification 0.182 0.149

TABLE XII: GPS2Vec mAP comparison of distance

metric: Euclidean vs. Haversine.

Task Euclidean Haversine

Venue Semantic Labeling 0.243 0.243

Image Classification 0.182 0.185

TABLE XIII: GPS2Vec mAP comparison of supervision:

supervised vs. unsupervised.

Task supervised unsupervised

Venue Semantic Labeling 0.243 0.247

Image Classification 0.182 0.161

each UTM zone2. As can be seen, our data-driven sampling

outperforms the uniform sampling by a significant margin.

The vocabulary-based semantic features generated at geotag

locations can be more accurate as they are directly associated

with user tags. Moreover, the image distribution in the supple-

mentary dataset tends to be consistent with the distribution of

the testing images. Thus, an improved mAP can be obtained

by paying more attention to densely populated areas.

4) Comparison of distance metric: We use the Euclidean

distance in this work as the UTM coordinate system naturally

converts a latitude and longitude pair into a planar coordinate

in meters. Table XII shows the mAP comparison by using the

alternative Haversian distance. On one hand, the calculation

of the Euclidean distance is more efficient. On the other hand,

the Haversian distance is more accurate when computing the

distance between two geo-coordinates on the spherical Earth’s

surface. Moreover, the Euclidean distance can only be used

within UTM zones, while the Haversian distance should be

adopted together with other projection models such as the

Google’s S2 cells.

2The training locations are obtained by dividing each UTM zone into
1000 × 1000 cells.

5) Comparison of supervision: Finally, we compare our

proposed supervised method with existing unsupervised geo-

tag encoding approaches. For example, the vocabulary-based

semantic feature introduced in Section III-B can be used

directly as an unsupervised geotag encoding approach. The

advantages of the supervised method are twofold. First, unsu-

pervised methods require access to the supplementary dataset

during inference, leading to potential computational costs

and processing delays. Second, as Table XIII shows, the

supervised method outperforms the unsupervised method as

the latter requires hand-crafted features that are sensitive to

data noise. Comparatively, our supervised method generates

learnt features that are more smooth and robust to data noise.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel framework, GPS2Vec, to learn

GPS semantic embeddings in support of location-aware ap-

plications. The generated semantic embeddings can be easily

integrated with existing high dimensional descriptors, e.g.,

image visual features, by early fusion, based on which a new

classifier can be trained to obtain more robust predictions. To

divide the Earth’s surface into smaller areas of manageable

scale, we adopt the UTM coordinate system and train a neural
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network for each UTM zone to generate location semantic

embeddings. We have conducted extensive experiments using

tweets, check-ins, and images with three location-aware appli-

cations. Our generated GPS semantic embeddings are comple-

mentary to the textual and visual features in existing systems.

The location-aware applications demonstrate the effective use

of our proposed GPS semantic embeddings in both CNN-

and RNN-based systems. In the future, we plan to increase

the data scale by utilizing different types of data sources for

vocabulary construction and semantic embeddings learning. If

the accuracy level of a geotag is available, it is also possible

to filter out noisy samples to generate more accurate semantic

features for GPS coordinates.
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