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Encoded Semantic Tree for Automatic User
Profiling Applied to Personalized Video

Summarization
Yifang Yin∗, Roshan Thapliya, and Roger Zimmermann,Senior Member, IEEE

Abstract—We propose an innovative methodautomatic video
summary generation with personal adaptations. The user inter-
ests are mined from their personal image collections. To reduce
the semantic gap, we propose to extract visual representations
based on a novelsemantic tree (SeTree). ASeTree is a hierarchy
that captures the conceptual relationshipsbetween the visual
scenes in a codebook. This idea builds upon the observation
that such semantic connections among the elements have been
overlooked in prior work. To construct the SeTree, we adopt
a normalized graph cut clustering algorithm by conjunctively
exploiting visual features, textual information and social user-
image connections. By using this technique, weobtain 8.1% im-
provement of normalized Discounted Cumulative Gain (nDCG)
in personalized video segments ranking compared with existing
methods. Furthermore, to promote the interesting parts of a
video, we extract a space-time saliency map and estimate the
attractiveness of segments by kernel fitting and matching. A
linear function is utilized to combine the two factors, based
on which the playback rate of a video is adapted to generate
the summary. We play the less important segments in a fast-
forward mode to keep users updated with the context. Subjective
experiments were conducted which showed that our proposed
video summarization approach outperformed the state-of-the-art
techniques by 6.2%.

Index Terms—Video summarization, user profiling, semantic
modeling, visual attention.

I. I NTRODUCTION

With the rapid development of network techniques and mul-
timedia sharing platforms, posting and watching videos online
has become an important way forpeopleto share interests and
ideas with each other. However, due to the fast growing video
collections, it has becomeincreasingly challengingfor users to
find the information they desire to view. Moreover, considering
the limitation of the available network bandwidth [1], it is
important to adapt the content displayed to usersto obtain an
improvedQuality of Experience (QoE) in video browsing. In
the past several years, extensive research has been conducted
in video summarization to generate a compact and informative
version by extracting the essential information [2].Such a
summarization scheme is a highly important module as it can
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Fig. 1: An example of adapting diverse tourism videos based
on personal preferences.

be used as a first step for many downstream video content
management tasks such as video search and delivery.

Traditionally, a video summarization is generated by ex-
tracting salient keyframes based on visual features [3], [4].
Various aspects have been utilized including scenes [5], [4],
[6], motions [7], [8], and object-of-interest [9], [10], [11] in
the saliency estimation and frame ranking. However,without
prior knowledge of user preferences, personalized adaptation
was never an option in the above approaches.To improve the
performance in user-centric applications, studies have been
performed on personalized video summarizationwhich is
highly challenging due to the difficulties encountered in (1)
user interest modeling and (2) content-based video segment
ranking.Most of the current techniqueson user profilingin-
volve manual interactions [12], [13], which might be tiresome
for people to manage. A user is usually required to input
preferences by specifying keywords [14], selecting preferred
events [15], or categorizing personal photo libraries [16], [17].
However, the limited descriptiveness of pre-defined categories
may hinder the understanding of a user’s intent.

It would be ideal if user preferences could be automatically
detected from certain kinds of personal data. One promising
source of information is the personal photos available from
social sharing applications such as Flickr and Picasa. As
pointed out by Takeuchi and Sugimoto [16], personal photos
contain rich information about people’s tastes and lifestyles.
For example, from the photo collections taken during traveling,
it is easy to see the type of tourism that a person likes the most.
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Fig. 2: Video segment ranking in our proposed personalized summarization framework.

However, tourism videos are usually lengthy by showing all
the attractive aspects of a country as illustrated in Figure1.
If a user shares a great number of images of museums and
churches, he or she is more likely to be a fan of cultural
tourism. Therefore, video shots that introduce a country’s
history, architecture, and religions should be ranked higher for
personal adaptation.The similarity between video segments
and personal photos can be measured with dictionary-based
feature extraction techniques such as soft assignment [18]and
sparse coding [19]. However, the existing approaches mostly
adopt a codebook formed by a set of visual descriptors without
considering any semantic relationships among the elements,
which hinders the achievement of improved results. Compared
with user specified preferences, one may argue that automatic
profiling might be less effective in describing the current intent
of a user. Therefore, to avoid mistakenly skipping important
parts, content-based adaptation is also necessary in order
to generate an informative overview that covers the major
subjects in the original video.

To fulfill the above criteria, we propose a video summa-
rization framework that estimates the importance of a segment
based on both the user profiles and the visual attention scores.
Figure 2 illustrates the video segment ranking module which
is one of the core components highlighted in the flow chart
as shown in Figure 3. Different fromtraditional approaches
where representative images are selected as queries, we model
user preferences through a compact representation extracted
with a semantic tree. A semantic tree is a hierarchical dictio-
nary that encodesthesemantic relationshipsamong thevisual
scenes,i.e., the images in a branch should be instances of
the subconcepts of the root. To construct such a hierarchy,
we measure the pair-wise similarity between imagesby con-
junctively considering visual features, textual information and
social user-image connectionsthat are available from social
sharing platforms such as Flickr. Next, a normalized graph
cut clusteringapproach is applied to generate the semantic
tree, based on which both userphotosand video keyframes are
encoded for personalized saliency score estimation.Moreover,
to measure the visual attention score of the content,we
compute the spatiotemporal saliency based on the off-the-
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Fig. 3: Illustration of the major components in this work.

shelf space-time saliency detection [9]. Note that we carry
out an additional step which models the saliency map by a
Gaussian kernel to reduce noise. The output kernel can be
interpreted as the region-of-interest (ROI) of the input frame.
Subsequently, we favour situations where the ROI is close to
the frame center byadoptingKullback-Leibler divergence as
the distance measure. Finally,a linear fusion is adoptedto
generate the final video summary by adjusting the playback
rate. Only the top ranked segments are selected and played ina
normal playback speed to improve the QoE in video browsing.
The contributions of this paper are summarized as follows:

• The introduction of a novel hierarchical dictionary named
semantic tree to encode the conceptual relationships
among thevisual scenes.

• An automatic content-based feature encoding approach
with the semantic tree, which is shown to be more
effective for personalized adaptation.

• The design of a video summarization prototype by
conjunctively considering personal interests and visual
attention. Experiments show that our proposed method
outperforms the state-of-the-art techniques.

The rest of this paper is organized as follows. We first report
the important related work in Section II. The construction
of the proposed semantic tree is introduced in Section III,
followed by the feature encoding technique introduced in
Section IV. Next, we apply our user profiling approach to per-
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TABLE I: A comparison with the previous work.

Work
General-purpose

video summarization
[4], [20], [21]

Wei et al. [14] Xu et al. [15] Takeuchi and
Sugimoto [16], [17]

Our proposed
SeTree method

Content-based Adaptation X X

Personalized Adaptation X X X X

User Preference – Semantic terms
specified by a user

Pre-defined classes
selected by a user

Clusters derived from
personal photo libraries

Feature encoding
from personal images

sonalized video summarization and present the visual attention
model in Section V. The experimental results in Section VI
validate the effectiveness of our system. Section VII concludes
and suggests future work.

II. RELATED WORK

Video summarization has been extensively studied in the
past several years.One of the core and problems is to
determine the important parts of a video [22], [23].Tradi-
tional video summarization detects a set of salient keyframes
based on thevisual clues [24], [4]. For example, Zhuanget
al. proposed a clustering-based approach which summarized
a video by a collection of keyframes that were identified as
cluster centers [3]. Ngoet al. proposed to abstract a video
by scene detection using normalized graph-cut algorithm [5].
Guan et al. proposed a top-down approach that took both
the global and local perspectives into considerations when
selecting representative keyframes [6].Other aspects such as
title [25], motion [7], [8] and video categories [26] have also
been considered in the user attention model for importance
ranking [27], [28].Seo and Milanfar presented a unified frame-
work to detect both static and space-time saliency in video
sequences [11].Almeida et al.presented a summarization ap-
proach for online video applications and addressed the issues
in the compressed domain [29]. Some recent work focused on
egocentric videos [10], [30], and extracted important objects
with which the camera wearer interacts.However, the above
work analysed the video content with little consideration of
user preferences. This greatly hinders the achievement of
satisfactory results for practical use.

For personalized video summarization, Weiet al. proposed
to adapt the video content based on both the client-side
resource constraints and the keywords provided by users as
preferences [14].Xu et al. proposed a personalized video adap-
tation scheme by mining both cognitive content and affective
content. Their system gives high priority to the events and
affective level selected by a user [15]. Takeuchiet al. proposed
to mine user preferences from personal photo libraries [16],
[17]. However, users are required to cluster photos into several
major categories to represent their interests. Zhanget al. pro-
posed to generate personalized sketch summarization of events
from the interactively selected keyframes [13]. As we can see,
most of the personalized summarization techniques require
human interactions to acquire the user preferences, which
might be tiresome to some extent [12], [13].Table I shows
a comparison of the related work. Generally speaking, video
abstraction strategies can be roughly divided into content-
based and personalized adaptation schemes.Popular tech-
niques belonging to the former include scene clustering [4]and

visual attention-based summarization [20], [21]. Such methods
are designed without any prior knowledge of user prefer-
ences.Comparatively, personalized adaptation usually relies
on classifiers trained for a list of pre-defined concepts [15],
[31] or visual example-based similarity search [17], [32],[33].
Due to the unpredictable condition change in videos such as
illumination and viewpoint, one of the major issues in this
area is to bridge the semantic gap between thevisual clues
and the semantic concepts. Moreover, with the surge of user-
centric applications, challenges have also been posed in the
presentation of user’s intent by query.

In multimedia search and recommendation [34], [35], [36],
textual clues and user behaviors have long been utlized
as supplementary information in addition to visual features.
Davidson et al. discussed the challenges of the YouTube
video recommendation system. They constructed a graph of
videos based on co-visitation activities. Subsequently, they
proposed to generate the recommendation list by expanding
from the watched, favored, and liked videos of a user [35].
Liu et al. proposed to re-rank the video search results from a
global perspective [36]. Multi-features including text, visual,
and audio information were used in the neighborhood score
propagation. However, different from video recommendation,
the ranking of video shots in a summarization system is highly
challenging as in most cases only the raw video stream can
be used for analysis.The content-based video summarization
approaches are still struggling to achieve satisfactory results.

III. SEMANTIC TREE CONSTRUCTION

We propose an unsupervised video summarization frame-
work by predicting user preference based on personal image
collections. Video shots showing conceptually similar content
should be given higher weights as the subjects are more likely
to arouse the user’s interest. To effectively rank video shots
w.r.t personal images, we propose to extract features based on a
semantic tree which is a hierarchical dictionary that describes
the semantic relationship among the visual scenes.Previous
solutions overlooked the conceptual connections among the
elements in the dictionary [37], [32], which hinders the
generation of more accurate representations for multimedia
documents.

To construct such a hierarchy, we collect social images from
Flickr to deem as the leaf nodes in the tree.We compute
the pairwise similarity of the leaves by exploiting the implicit
relationships among them based on the visual features, the
textual information and the social user-image connections.
Thereafter,a normalized graph cut clustering algorithmis
applied to generate the semantic tree which will be used as
the dictionary for visual feature encoding.
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A. Pairwise Image Similarity Measure

1) Visual Similarity: The visual similarity between images
is estimated based on the Euclidean distance between their
visual descriptors (e.g., HOG, GIST, and SIFT).To preserve
the semantic meanings, here we adopt the ObjectBank rep-
resentation [38]. It is a high-level visual representationthat
describes an image as a scale-invariant response map of a
large number of pre-trained generic object detectors.

Let Ii denote an image andXi be its visual descriptor.The
visual similarity between imagesIi and Ij is subsequently
computed with a Gaussian function as

V S(Ii, Ij) = exp

(

−
‖Xi −Xj‖22

σ2

)

(1)

whereσ is a smoothing factor. Such content-based image anal-
ysis has its own limitations such as the well-known semantic
gap. Therefore, it might not be sufficient to utilize only the
visual features in the similarity measure. In the following
sections, we will introduce how to exploit the textual and
social connections between images to tune the visual space
defined by the dictionary.

2) Textual Semantics: Nowadays, social sharing platforms
allow users to add tags to photos for document search and
management.We take advantage of this and compute the se-
mantic similarity between images by analysing the associated
tags based on the WordNet [39]. We filter the raw tags by
removing the ones that do not exist in the WordNet, and
compute the semantic similarity of the remaining tagswith an
information-based approach. The key idea is to measure the
amount of information two tags share. According to Lin [40],
the similarity betweentwo tagsti and tj is estimated as

Sim(ti, tj) =
2IC(lso(ti, tj))

IC(ti) + IC(tj)
(2)

where lso(ti, tj) is the lowest super-ordinate andIC(t) de-
note the information content of tagt. Subsequently, Zhouet
al. modeled the information content of a tag based on its
hyponyms and depth [39] as

IC(t) = k

(

1 − log(hypo(t) + 1)

log(nodemax)

)

+ (1 − k)

(

log(deep(t))

log(deepmax)

)

(3)

where functionshypo(t) and deep(t) return the number of
hyponyms and the depth of tagt, respectively.nodemax and
deepmax are constant values set to the maximum number
of concepts in the taxonomy and the maximal depth of the
taxonomy, respectively.k is a balancing factor that controls
the weights of the two aspects. In the experiments, we used
the Semantic Measures Library [41] which is an open source
Java implementation of semantic measures1.

Let T = {t1, t2, ..., tn} denote the tag set after filteringwith
WordNet.We describe the tags associated with imageIi by a
vectorTi = [ti1, t

i
2, ..., t

i
n] where

tij =

{

1 if Ii is annotated bytj
0 else

(4)

1http://www.semantic-measures-library.org/sml/

By normalizing Ti by its Manhattan norm, the textual
feature of imageIi is represented asTi =

Ti

‖Ti‖1

. Finally, the
textual similarity between imagesIi andIj is computed by

TS(Ii, Ij) = TiMT
⊺

j (5)

whereM is a similarity matrix. The element in thei-th row
and thej-th column ofM , denoted bymij , is the similarity
score between tagsti and tj computed with Eq. 2.

3) Social Graph: Different from the visual and textual
similarity where the scores are directly computed between
individual images, we analyse the user behaviours on social
sharing platforms from a global perspective. The basic idea
is that if peoplewho like imageIi also like imageIj but
dislike imageIk, the distance betweenIi andIj is likely to be
smaller than the distance betweenIi andIk. The photos shared
by one user might be diverse, but the implicit connections
among images can be derived from multiple user behaviors.
For analysis, we build a user-image graphG = {V,E}, which
is undirected bipartite.The vertices,V , are users and images.
Let W denote the weights assigned to the edges in graphG

based on user behaviours. Formally,wij = 1 if one vertex of
edgeeij is a user node and the other is an image node that
has been favored by this user on the social sharing platforms,
andwij = 0 otherwise. To capture the global structure of the
graph, we compute the relatedness for every pair of images
through the Random Walk and Restart (RWR) algorithm [42].

Starting from a vertexi, RWR computes the relevance
scores of the nodes inV w.r.t. vertex i as defined by

~ri = cW̃ ~ri + (1− c)~ei (6)

where ~ri is the vector of relevance scores,c ∈ [0, 1] is the
restart probability,W̃ is the normalized weighted matrixwith
reference toW , and ~ei is the starting vector with thei-
th element set to 1 and 0 forthe others. The steady-state
probabilities ~ri can be solved by iteratively applying Eq. 6
until convergence. Thereafter, the relevance scores between
every pair of images can be obtained by starting from different
image vertices.

Let SS(Ii, Ij) be the social relevancebetween imagesIi
andIj computed by RWR.The similarity between the visual
scenes in the dictionary is defined as a linear combination
of the scores calculated based on the above three key clues,
which is

Sim(Ii, Ij) = αV S(Ii, Ij) + βTS(Ii, Ij) + γSS(Ii, Ij) (7)

whereα, β and γ are positive weighting factors, subject to
α+ β + γ = 1.

B. Hierarchical Clustering

As aforementioned, the purpose is to construct a hierarchy
that can be used as the dictionary for improved visual feature
encoding.It is expected to be more descriptive as it addi-
tionally captures the relationships among the visual scenes.
To build such a dictionary, we hierarchically cluster theleaf
nodesbased on the pairwise similarities computedwith Eq. 7.
This process is controlled by the following two parameters:



SUBMISSION TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY 5

(1) the height of the tree, denoted byH , and (2) the number
of branches that each node has, defined byB.

Specifically speaking, we first cluster thethe leaf nodes of
imagesinto B groups. Next, we recursively carry out the same
process and cluster the images in each group intoB subgroups.
By doing this, the semantic treeis created from root to leaves,
until the maximum heightH is reached.

Compared with the vocabulary tree proposed by Nister and
Stewenius [37], our model differs in several aspects. First,
the vocabulary tree is designed for quantizing image local
descriptors where the visual feature is the only available
clue for clustering. Comparatively, our model targets the
hierarchical dictionary construction of visual scenes that carry
semantic information [32]. Additional data sourcesof textual
and social cues can also be analysed for hierarchical clustering.
By utilizing such supplementary information in addition to
the visual features, the nodes in the same branch of the tree
are more likely to be semantically consistent with each other.
Recall thatthe social relevance scores are computed from a
global graph without generating feature vectors for images.
Therefore, we adopt the normalized graph cut algorithm [43]
instead of k-means clustering as the latter is no longer appli-
cable in our case.Moreover, our model adopts an alternative
feature encoding technique. The details will be discussed in
the next section.

IV. FEATURE ENCODING

Let Ĩ = {I1, I2, ..., In} denote theset of Flickr images for
dictionary construction,and J̃ = {J1, J2, ..., Jm} denote the
personal images of a user (n ≫ m). We first individually
encode the personal images and then pool the scores at each
node to obtain the final representation. As the coding process
is the same for every imageJj , we will omit the subscript in
circumstances of no ambiguity.

To utilize the semantic tree for feature encoding, we first
generate sparse code on the leaf nodes(Flickr images)and
then propagate the scores through the internal nodes up to the
root. Formally, we usenodehi to represent thei-th node with
a height ofh, h ∈ {0, 1, ..., H}, as the height of a node is
the number of edges on the longest downward path between
that node and a leaf.The coding process is carried out as
follows. First, for every imageJ ∈ J̃ , we represent it by its
visually similar neighboursamong the leaf nodes. LetD(J, Ii)
be the Euclidean distance betweenimagesJ and Ii in the
visual feature space. The scores we assign to the leaf nodes
with reference toJ arecalculatedas,

s0i =
1neiJ (Ii) ·Kσ(D(J, Ii))

∑n

j=1 1neiJ (Ij) ·Kσ(D(J, Ij))
(8)

whereKσ(x) = 1√
2πσ

exp(− x2

2σ2 ) is a Gaussian kernel and
1neiJ (I) is an indicator function that selects the k-nearest
neighbours of imageJ in the leaf node images as shown in
Eq. 9. In the experiments, we find that the feature encodings
become less effective whenk > 200. Therefore, we set
k = 100 and select the top 100-nearest neighbours for every

Images to encode Semantic Tree 

Soft assignment 

{0.1, 0.7, 0.6, 0.6} 

{0.6, 0.2, 0.2, 0.1} 

{0.3, 0.1, 0.2, 0.3} 

Feature 

aggregation 

[                                                               ] 
0.25 

0.18 

0.08 

0.10 

0.13 

0.05 

0.08 

0.10 

0.05 

0.55 

0.28 

0.23 

Fig. 4: Illustration of feature encoding using the semantic tree.

imageJ .

1neiJ (I) =

{

1 if I ∈ k-NN of J

0 else
(9)

After soft assignment on the leaf nodes, we propagate the
scores to the internal nodes level by level. The score of an
internal node,shi , is defined to be the sum of the scores of its
child nodes.To aggregate the features of all personal images
in set J , we apply the average pooling strategy where only
the mean of the scores associated with each node is kept.
This process is illustrated in Figure 4.As can be seen, in this
example we encodea set of four imagesbased on the semantic
tree. After individually extracting the features for everyinput
image by soft assignment, each node is associated with four
scores correspondingly. The next step is to apply a feature
pooling strategy to generate a compact representation. Popular
pooling strategies include average pooling and max pooling.
We adopt the former because personal photo collections are
usually quite diverse where individual images should not be
emphasized too much. The average pooling scheme generates
a single feature vector for a set of images while being able to
maintain the feature descriptiveness at the same time.

To further improve the system effectiveness, we additionally
carry out a weighting process after thefeature aggregation. As
suggested by Nister and Stewenius [37], we assign weightswh

i

to each of the nodes in the tree as given below,

wh
i = ln

N

Nh
i

(10)

where h denotes the height of the node,N is the total
number of images in the training dataset, andNh

i is the
number of images that are the descendant ofnodehi . ln N

Nh

i

is an entropy weighting that promotes the nodes containing
descriptive visual scenes. As the nodes at higher levels are
usually associated with largerNh

i , ln N

Nh

i

also decreases the
weights assigned to the nodes close to the root. It is also
possible to block the higher levels in the tree by setting
their weights to zero as the nodes close to the leaves are
generally more representative in the feature encodings.Finally,
we update the node scores by multiplying the weights, that is,

xh
i = wh

i · shi (11)

The final representation is generated by concatenating the
scores of leaf and internal nodes on each level into a vector,
which isXSTr = [x0

1, x
0
2, ..., x

0
n, ..., x

H−1
1 , xH−1

2 , ..., xH−1
B ].
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Similarly, the feature of a video segment can be extracted
by carrying out the same process on the set of video frames,
F̃ = {F1, F2, ..., Fm}, belonging to it.

V. V IDEO SUMMARIZATION

Previously we have introduced the construction of the
semantic tree and its utilization for feature encoding. Here we
apply the semantic tree to a personalized video summarization
system.We extract frames from a video at a sample rate of
two per second for feature encoding and shot detection. The
frames are then clustered into groups and the shot boundaries
are determined whenever two consecutive frames have been
clustered into different groups [44].Next, we estimate the
importance of each segment based on which a dynamic video
summary is generated to improve the QoE in video browsing.

A. Video Segment Ranking

A high-quality video summary is expected to satisfy a user’s
needs by personalized adaptation. Compared with pre-trained
classifiers, unsupervised methods reduce the manual efforts
but have one drawback of being comparatively less accurate.
Therefore, we would also like to maintain the informativeness
of the summary in order to make sure that no important parts
will be missed by users. To fulfill the above criteria, we rank
video segments by linearly combining a personalized saliency
scorePS with a spatiotemporal saliency scoreAS, formally
given as

Si = PSi + λASi (12)

whereλ is a balancing factor. The subscripti indicates that the
scores arecomputed with reference tothe i-th segment in the
input video. Next we introduce the technical detailsabout how
to calculatethe personalized and the spatiotemporal saliency
scores, respectively.

1) Personalized Saliency: The personalized saliency score
is estimated by comparing each video segment with the
user profile. As introduced in Section IV, the feature
of a set of images (or frames) encoded with a se-
mantic tree can be represented as a vector,XSTr =
[x0

1, x
0
2, ..., x

0
n, ..., x

H−1
1 , xH−1

2 , ..., xH−1
B ], where H is the

height of the tree,B is the number of branches that each
node has, andn is the total number of leaf nodes in the tree.

Let XSTr
u be the feature of the personal images of a user

and XSTr
i be the feature of thei-th video segment. The

personalized saliency score for thei-th segment, denoted as
PSi, is formulated as

PSi = 1−
1

2
‖

XSTr
i

‖XSTr
i ‖

−
XSTr

u

‖XSTr
u ‖

‖2 (13)

We normalize the feature vectors withL2-norm and convert
the distance measure to the cosine similarity between the
two feature vectors with Eq. 13. In the experiments, different
normalization schemes have been evaluated andL2-norm has
been shown to obtain better results than theL1-norm.

2) Spatiotemporal Saliency: In recent years, extensive stud-
ies have been carried out in the field of visual attention
modeling for images and videos [9], [11]. By fusing the
spatial and temporal attention values, a static video summary
is usually generated by extracting a set of visually salient
keyframes from the video [20]. To follow the path of the
existing attention-basedschemes, we generate the saliency
map for each frame by utilizing the off-the-shelf space-time
saliency detection approach [9]. As illustrated in Figure 5,
the first picture is an input video frame. Figure 5 (b) shows
the estimated saliency map of the input frame by employing
the space-time local steering kernels. Instead of obtaining the
attention score of a frameby directly aggregating the pixel-
wise saliencies from the map, we apply an additional step by
fitting the data into a Gaussian kernel to reduce the noise (see
Figure 5 (c)).

(a) Video frame (b) Saliency map (c) Kernel fitting

Fig. 5: Illustrations of our proposed attention-based spatiotem-
poral visual saliency modeling.

The attention score of a frame is formulated based on two
factors. The first factor is the weighted sum of the saliency
map. Let smap(i, j) denotethe saliency value of the pixel
located at position(i, j) before kernel fitting.The Gaussian
kernel estimated based on the saliency map, denoted byQ,
describes the distribution of the salient pixels in a frame.
Thereafter, the sum of the saliency map weighted by kernel
Q is computed as

Sum(smap,Q) =
∑

i,j

Q(i, j) · smap(i, j) (14)

The second factor is based on the observation that people
tend to focus on the center of an image. LetP = N (µ,Σ)
denote the normal distribution located at the center of an
image. We favour the saliency distributionsQ that are close
to the ideal distributionP by computing the Kullback-Leibler
divergence (KLD), which is defined to be the integral

DKL (P ‖ Q) =

∫ ∞

−∞
ln

(

p (u)

q (u)

)

p (u) du (15)

wherep (u) andq (u) arethe densities of the distributionsP
andQ. In our implementation, we utilized a Matlab toolbox
for Kernel Density EstimationKDE2 for Gaussian kernel
estimation and KLD calculation.

Subsequently, the attention score of a frameF is formulated
by Eq. 16.

AS(F ) =
Sum(smapf , Qf )

DKL (P ‖ Qf )
(16)

where smapf and Qf indicate the saliency map and the
Gaussian kernel associated with frameF .

2http://www.ics.uci.edu/ ihler/code/kde.html
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Let F̃i represent the frames of thei-th video segment, the
attention-based spatiotemporal saliency score for this segment,
denoted byASi, is computed by averaging the frames it
contains

ASi =
1

‖F̃i‖

∑

F∈F̃i

AS(F ) (17)

B. Dynamic Summary Generation

To improve the quality-of-experience for video browsing,
we generate a dynamic video summary based on the saliency
estimation introduced in the previous sections.The top ranked
video segments are selected and displayed to users at the
normal playback rate.To keepusersupdated with the context
between the selectedshots, we play the rest of the video
in a fast-forward mode instead of completely cutting off the
less interestingparts. The length of the final summary can be
controlled by a parameterratio ∈ (0, 1). The length of the
selected salient video segments should not exceedratio times
the total length of the input video.

Traditional video summarization methods can be divided
into two categories,namely the static keyframe abstraction
and the dynamic video skimming.Our strategy belongs to the
latter. It has the advantage of presenting the users an infor-
mative video summary. Due to the limitations of the content-
based video analysis, people might be afraid of missing any
of the interesting scenes or events captured in the video.
Therefore,a better strategy is to enable rapid skimming at
a fast playback speed in order to ensure that no important
segments are mistakenly skipped [45].

Please note that the major issue we studied in this paper is
how to effectively estimate the importance of each segment.
In practice, people may have different preferences on how
to present the summary to users. This part can be easily
customized by letting users to choose the way they prefer.
It could be simply presenting the keyframes of important
segments, skipping the less interesting parts or displaying the
video at a customized fast playback speed as what we did in
the experiments.

VI. EVALUATION

To evaluate the effectiveness of our proposed approach,
we collected 41,212 images of 100 users from Flickr as the
experimental dataset. After manually filtering out valueless
images (e.g., screenshots), we randomly selected 20 users and
used theirimage collections as test queries for personalized
video segment rankingin Section VI-B. The rest of the Flickr
images were used as the training samplesfor the semantic tree
construction and the parameter tuning.We utilized a public
video dataset SumMe [21] to testthe proposed attention-based
ranking model. Additionally, we prepared a new YouTube
dataset due to the lack of public videos for personalized rank-
ing evaluation.To keep the dataset diverse and manageable,
we collected 25 videos of five categories including animal,
natural scene, cityscape, food, and landmark, the size of which
is similar to other summarization papers [20], [21].

TABLE II: The average nDCG comparison based on different
clues and their fusion.

Method Random Visual Textual Social Fusion

nDCG 0.412 0.525 0.459 0.504 0.547

A. Parameter tuning

As aforementioned, we examined the three key clues for
image similarity estimation. The parametersα, β and γ in
Eq. 7 should be set according to the quality of their corre-
sponding data sources. To measure the reliability of the three
information sources in our training set, we randomly sampled
100 images from the training dataset. Each of them was used
as a query to rank the rest of the images based onthe similarity
scores derived from different clues. The measure we used for
comparison is the normalized Discounted Cumulative Gain
(nDCG). It is designed for evaluating ranking quality. For a
query q, let reli denote the relevance score of thei-th item
in the result list, the Discounted Cumulative Gain (DCG) is
calculated as

DCG =
∑

i

2reli − 1

log2 (i+ 1)

To normalize over queries, we compute the Ideal Discounted
Cumulative Gain (IDCG) which equals to the maximum pos-
sible DCG produced by the ideal ranking list. Subsequently,
nDCG is computed as

nDCG =
DCG

IDCG

The ground-truth relevance scores between imageswere
defined by four levels: 0.9, 0.6, 0.3, and 0.1 (0.9-most, 0.1-
least) based on the relevance rankestimatedby humans.
The image similarity of each pair was judged by a total of
21 people and the average score over all the subjects was
adopted as the ground-truth annotation.Irrelevant images were
assigned a score of zero.

We carried out 100 querieswith similarity measures as
introduced in Section III-A based on visual, textual, and
social features, respectively. The comparison of the average
nDCG over the queries is reported in Table II. To show the
statistics of the dataset, we also report the result achieved by
random permutations in the first column.As can be seen,
the visual clueswere more reliable than the othersas the
ObjectBank representation carried semantics ofthe image
content to some extent. The tags of Flickr images were
added by their uploaders and therefore mightbe inaccurate
and incomplete. After filtering using the WordNet, a number
of images were associated with little textual information,
resulting a less effective approach in the similarity ranking.
One way to overcome this problem is to use images with
ground-truth labels (e.g., the ImageNet [46]), but such datasets
lack the social clues. The exploration of other image sources
for the semantic tree constructionwill be considered as part
of our future work.

Considering the three features were extracted from different
clues, better results can beobtainedby fusing such information
with low correlations.Recall thatα+ β + γ = 1, we linearly
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Fig. 6: nDCG plot based on variations of parametersα andβ.

combined the three features and plotted nDCG in Figure 6
by changing the values of parametersα and β in Eq. 7.
The highest score of 0.547 was obtainedwhen α = 0.6
β = 0.1 and γ = 0.3. This is consistent with the reliability
of the features, and we kept this setting fixed in the following
experiments.

B. Personalized ranking

We evaluated the effectiveness of our proposed semantic
tree in personalized video segment ranking. The 25 videos
we collected from YouTube were further segmented into 751
shots [44]. For each of the 20 users, we ranked the video seg-
mentswith reference to their personal photo collections. The
ground-truth relevance scores were generated the same way
as described in the previous section by manual annotations.
Table III reports the average nDCG obtained with different
SeTree settings. As the nodes close to the leaves are generally
more powerful for feature encoding, improved results have
been reported by scoring with only the last two levels of the
nodes. Moreover,L2-norm gives better personalized ranking
thanL1-norm as the distance measure in Eq. 13. As can be
seen, the best ranking result has been reported whenH = 2
andB = 1000, with nDCG equal to 0.677.

Next, we compared our approach with the following three
methods: (1) random, (2) pairwise distance, and (3) Bag-of-
Scene (BoS) signature [32].Pairwise computes the Euclidean
distance between every pair of images and uses the average
value for ranking.BoS generates a dictionary of scenes, each
of which represents a specific semantic concept. Next, it
assigns frames to one or more visual scenes, followed by a
pooling step to generate the final representation. However,
one limitation is that it assumes the basis vectors in the
codebook to be independent without modeling the semantic
relationship among the scenes. We evaluated two advanced
coding techniques, namely the soft assignment (BoSsa) and the
sparse coding [19] (BoSsc) with the Bag-of-Scene signature. A
dictionary size of 1000 was adopted as a larger codebook did
not impact the results much. The average nDCG comparison is
reported in Table IV and thebest and the second bestresults
are highlighted.The result ofRandom was computed as the

TABLE III: Average nDCG comparison with semantic trees
in different shapes. Level: number of levels or tree height (H),
Branch: number of branches (B), Norm: the normalization
method used in Eq. 13, Scoring: number of levels (starting
from the leaf nodes) used for scoring.

Run Level Branch Norm Scoring nDCG

1 2 100 L1 2 0.621
2 2 100 L2 2 0.660
3 2 500 L2 2 0.667
4 2 1000 L1 1 0.622
5 2 1000 L2 1 0.664
6 2 1000 L2 2 0.677
7 3 10 L1 2 0.615
8 3 10 L2 2 0.622
9 3 50 L2 2 0.658
10 3 50 L2 3 0.633

TABLE IV: nDCG comparison of the methods on ranking
video segments.

Methods Pairwise BoSsa BoSsc SeTree

U1 0.626 0.607 0.569 0.669
U2 0.607 0.595 0.657 0.691
U3 0.575 0.544 0.634 0.491
U4 0.726 0.828 0.840 0.796
U5 0.508 0.565 0.527 0.742
U6 0.691 0.643 0.647 0.576
U7 0.395 0.436 0.554 0.738
U8 0.713 0.704 0.710 0.717
U9 0.710 0.687 0.686 0.662
U10 0.646 0.534 0.569 0.468
U11 0.786 0.768 0.828 0.753
U12 0.759 0.850 0.861 0.771
U13 0.196 0.726 0.658 0.833
U14 0.589 0.591 0.595 0.724
U15 0.215 0.225 0.421 0.549
U16 0.721 0.733 0.634 0.812
U17 0.681 0.561 0.610 0.564
U18 0.815 0.851 0.846 0.837
U19 0.690 0.579 0.491 0.631
U20 0.570 0.486 0.355 0.520

Avg. 0.611 0.626 0.635 0.677

nDCG of a random permutation of the segments. It is provided
as baseline that shows the characteristics of experimentaldata.

As can be seen from the detailed results on each of the
users,our proposed approach outperformed the other methods
in most of the cases. ThePairwise method worked well
when users’ personal images capturedconsistent content on
one topic. However, this method is time-consuming as it
computes the pairwise distance between the high-dimensional
visual features of frames. This drawback hinders its utilization
in realtime video summarizations. Comparatively,BoS and
SeTree overcome thisissueby generating high-level semantic
video representations. BoSsc utilizes the sparse coding tech-
nique [19], which improves the soft-assignment coding [18]by
approximating a feature as a linear sum of a sparse set of the
basis vectors in the dictionary. As bothBoSsa andBoSsc use a
codebook of single-level structure,it neglects the conceptual
relationshipamong the visual scenes. Our proposedSeTree
addresses this issue by using a tree structure, and has been
verified to be effective as it outperformedBoSsa andBoSsc by
8.1% and 6.6%, respectively.
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TABLE V: F-measure comparison at 15% summary length.

Video Name Random Attention [20] Superframe [21] ST [9] STKernel
eg

o. Base jumping 0.144 0.194 0.121 0.119 0.171
Scuba 0.138 0.200 0.184 0.120 0.180
Valparaiso Downhill 0.142 0.231 0.242 0.275 0.277

m
ov

in
g

Bearpark climbing 0.147 0.227 0.118 0.194 0.234
Bus in Rock Tunnel 0.135 0.112 0.135 0.147 0.145
Cockpit Landing 0.136 0.116 0.172 0.225 0.182
Excavators river crossing 0.144 0.041 0.189 0.117 0.139
Kids playing in leaves 0.139 0.084 0.089 0.073 0.225
Notre Dame 0.137 0.138 0.235 0.054 0.135
Playing on water slide 0.134 0.124 0.200 0.038 0.063
Saving dolphins 0.144 0.154 0.145 0.121 0.113
St Maarten Landing 0.143 0.419 0.313 0.319 0.396
Statue of Liberty 0.122 0.083 0.192 0.141 0.217
Uncut Evening Flight 0.131 0.299 0.271 0.308 0.246
paluma jump 0.139 0.028 0.181 0.114 0.115
playing ball 0.145 0.140 0.174 0.155 0.134

st
at

ic

Air Force One 0.144 0.215 0.318 0.389 0.328
Fire Domino 0.145 0.252 0.130 0.220 0.249
Paintball 0.127 0.281 0.320 0.353 0.340
car over camera 0.134 0.201 0.372 0.356 0.427

mean 0.139 0.177 0.205 0.192 0.216

C. Attention-based ranking

We verified our spatiotemporal saliency estimation approach
see Section V-A2by comparing it with three state-of-the-
art methods.ST denotesthe off-the-shelf technique of space-
time saliency detection [9]. The importance of a frame is
estimated by averaging thesaliency scores of all pixels. We
refer to our approach asSTKernel to emphasize the kernel
density estimation andthe KLD distance calculation. The
other two competitors are based on visual attention [20] and
superframe [21], respectively. We carried out experiments
on 20 videos from the public dataset SumMe introduced
by Gygli et al. [21]. Based on camera characteristics, the
videos were divided into three categories: static, moving and
egocentric.A group of study subjects were asked to produce
video summaries that contain most of the important content,
and each video in the dataset was summarized by 15 to
18 different people.We selected segments around the top
ranked frames and generated summary with length set to
15% of the input video. Additionally, we report the results
of assigning random scores to characterize the dataset. Here
we followed Gygli et al. [21] and adopted the pairwise f-
measure as the measurement. For each ground-truth generated
by human, we computed precision and recall on a per-frame
basis. Subsequently, the f-measure was computed as,

F1 = 2 ·
precision · recall

precision+ recall

Finally, we averaged the f-measures over the ground-truth
selected by different people as the final measure for evaluation.
The comparison of the f-measures at 15% summary length is
reported in Table V,where thebest and second bestresults
are highlighted.

Ejazet al. [20] obtained the static attentionscoreof a frame
by averaging the non-zero values in the saliency map. Com-
paratively, our methodSTKernel extracted the spatiotemporal

region-of-interestfrom each frame. The saliency map was
next characterized by a Gaussian kernelto create summary
statistics that are less sensitive tothe high-frequency noise.
In addition to the weighted average of pixel saliency values,
we also promote frames where the spatiotemporal region-of-
interest is close to the image centre. As indicated by Table V,
our method improved the f-measure by 22.0% and 12.5%,
respectively, compared with the attention-based approachpro-
posed by Ejazet al. [20] and the original space-time saliency
detection method [9].Gygli et al. [21] segmented videos into
superframes and predicted the interestingness by fusing scores
of human attention, video quality, presence of landmarks,
faces and objects. To combine the above features, they used
a linear model wherea great number ofparameters needed
to be trained. Comparatively, our method only introduces two
parameters (the center region of a image characterized by a
Gaussian distributionP = N (µ,Σ)) that can be heuristically
decided. We speculateSuperframe would require a compar-
atively larger processing time than our approach due to the
utilization of complex features for video analysis, while our
method, however, may have a trade-off in accuracy for some
of the cases as shown in Table V.

In this experiment, we resized the input frames to64×64 for
space-time saliency map extraction. Subsequently, parameter
µ was set to(32, 32), and the center region was defined as a
circle with standard deviation set to 5.

D. User study

We have evaluated the effectiveness of our proposed per-
sonalized and spatiotemporal scoring in the previous sections,
respectively. Here we generated ten video summaries for ten
users with different interests by combining the above two
scores and performed a user study. The duration of the videos
varies from 2 minutes and 2 seconds to 27 minutes and 29
seconds. To illustrate, Figure 7 shows an example of the
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Fig. 7: Illustrations of the frame samples selected by our algorithm SeTree+STKernel.
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Fig. 8: Subjective evaluation on the performances of summarization schemes.

summary generated by our approach.In this case, the user’s
interest is the Golden Gate Bridge in California. The parameter
λ in Eq. 12 was set to 0.3. Subjective tests were conducted
with users to compare the effectiveness of our scheme with
the following three approaches.

• SC: A video summarization scheme based on the scene
clustering algorithm. The video segments around the
keyframes of the top salient scenes are selected [4].

• BoS: An example-based video summarization scheme.
The similarity between video segments and query exam-
ples is computed based on a compact video representation
called Bag-of-Scene [32]with soft-assignment coding.

• STKernel: The importance of a video segment is deter-
mined by the visual attention score estimated based on
the space-time saliency map [9] with kernel fitting.

For each of the above methods, we selected the top ranked
segments, the total length of which was set to no longer than
15% of the input video.A group of 21 subjects (different from
the eight users in the test set) participated in this user study.
They were requested to watch the summaries very carefully,
and rank the results on a scale of 1-10 (1-the worst and 10-the
best) based on the following two aspects,(1) therelevance of
the summary to the user’s personal image collections (i.e.,
user interest), and (2) thediversity of the summary with
reference to the video content. To reduce the carryover effect,
we randomized the orders of the summaries generated by
different methods before presenting them to the participants.
The results are illustrated in Figure 8(a) and 8(b), respectively.

Method STKernel calculated the importance of video seg-
ments based on the space-time saliency map estimation as
introduced in Section V-A2. This methodis capable of ex-
tractingthe interesting parts of a video. However, the generated
summary is not adapted tothe user preferences. Such strategy
is suitable for the SumMe dataset where the test videos are
strongly concentrated on specific topics (object or event).
It might not be equally effective for more complex videos
which are formed by multiple shots with longer duration.
Comparatively, methodSC is designed to automatically deter-
mine the representative scenes of a video by clustering. The
importance of a scene was measured by the number of frames
quantized to it. Subsequently, we chose the frame with the
maximum membership grade for each cluster as the keyframe,
and selected the segments around the keyframes of the top
salient scenes to play at the normal speed. Therefore,it can be
seen from Figure 8(b) thatSC works generally well in terms
of maintaining the diversity of the video summaries, but it
sometimes may include lengthy but less important scenes such
as a person talking in front of the camera.MethodBoS applied
the high-level Bag-of-Scene representation to personalized
video summarization. It selected the segments that are the most
visually similar to the user’s personal images as the salient
parts. Thereby, it obtained relatively high scores in termsof
relevance in the user study.

To select theimportant shotswith personal adaptation, we
fusedSTKernel with our proposedSeTree. It extracted the vi-
sual features with a hierarchical dictionary which encapsulates
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TABLE VI: Effectiveness comparison based on the average
satisfaction scores evaluated by users.

Method SC BoS STKernel
SeTree+
STKernel

Mean 6.45 6.62 6.25 7.03
Standard Dev. ±0.51 ±0.58 ±0.50 ± 0.52

the conceptual links between scenes to improve the similarity
search accuracy. The overall satisfactory of each summary
was measured by the average value of the relevance and the
diversity. As shown in Table VI, our proposed approach is
more effective than its competitors.It achieved an average sat-
isfaction score of 7.03, outperforming the second best method
BoS by 6.2%. Moreover, we measured the consistency of the
user ratings by computing Cronbach’s alpha and obtained an
average value of 0.7, which is considered to be acceptable for
a good test [47].These results indicate that our method is able
to effectively adapt a video’s content to personal interests and
generate an diverse and satisfactory summary.

VII. C ONCLUSION AND FUTURE WORK

We presented a visual approach for user profilingwith a
hierarchical dictionarytermed SeTree. The feature encoded
by SeTree is more descriptive than theBoS representation as
it additionally captures the semantic relationships amongthe
visual scenes in the codebook. To construct the semantic tree,
we performa normalized graph cut clusteringby conjunctively
utilizing visual, textual, and social clues. Our tentativeresults
show that an improvement of8.1% compared to BoS with the
sparse coding technique was observed with our test data.We
predict, however, that higher accuracy can be further obtained
by using pictures with less noisy text compared to Flickr
images. Next, we apply our proposed model to personalized
video summarization. To promote theimportant segmentsof
a video, we also estimate the attention-based spatiotemporal
saliency score by modeling the region-of-interest in a frame
with a Gaussian kernel. We linearly fuse the personalized
score and the spatiotemporal saliency for video segment
ranking. The less importantshotswill be fast-forwarded in
the generated dynamic summary to improve the QoE. In our
initial experiments with viewing quality analysis, our results
are found to be6.2% better than summaries generated by
standard methods such asSC andBoS.

In the future, we will carry out experiments by utiliz-
ing other image sources forSeTree construction in order to
enhanceclustering accuracy. To improve its descriptiveness,
more advanced coding techniques will be studied and evalu-
ated. Moreover, we will apply our proposedSeTree encoding
to other applications such as video retrieval and classification
to evaluateits effectiveness.
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