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ABSTRACT
Automatic inference of missing road attributes (e.g., road type and
speed limit) for enriching digital maps has attracted significant
research attention in recent years. A number of machine learning
based approaches have been proposed to detect road attributes
from GPS traces, dash-cam videos, or satellite images. However,
existing solutions mostly focus on a single modality without mod-
eling the correlations among multiple data sources. To bridge the
gap, we present a multimodal road attribute detection method,
which improves the robustness by performing pixel-level fusion
of crowdsourced GPS traces and satellite images. A GPS trace is
usually given by a sequence of location, bearing, and speed. To
align it with satellite imagery in the spatial domain, we render GPS
traces into a sequence of multi-channel images that simultaneously
capture the global distribution of the GPS points, the local distribu-
tion of vehicles’ moving directions and speeds, and their temporal
changes over time, at each pixel. Unlike previous GPS based road
feature extraction methods, our proposed GPS rendering does not
require map matching in the data preprocessing step. Moreover,
our multimodal solution addresses single-modal challenges such
as occlusions in satellite images and data sparsity in GPS traces
by learning the pixel-wise correspondences among different data
sources. Extensive experiments have been conducted on two real-
world datasets in Singapore and Jakarta. Compared with previous
work, our method is able to improve the detection accuracy on road
attributes by a large margin.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Neural networks.
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1 INTRODUCTION
To have an accurate and up-to-date digital map is crucial for today’s
ride-hailing providers such as Didi [1] and Grab [15] to maintain
the high quality of their taxi and car services. Incomplete map data
such as a missing road or even a missing road attribute can lead to
misleading routing decisions or inaccurate estimation of a driver’s
arrival time. Unfortunately, enriching digital maps with road at-
tributes is tedious and labor-intensive as it requires heavy manual
input from human annotators. This results in the missing of road
attribute labels in a significant number of roads in both commercial
and crowdsourced digital maps. Using OpenStreetMap (OSM) [10]
as an example, its data completeness and accuracy vary signifi-
cantly among different cities around the world. While about 23%
of the roads in downtown Singapore are annotated with the speed
limit label, this number drops significantly to only a few in central
Jakarta. Therefore, it is crucial to develop a robust road attribute
detection method to reduce the manual cost for crowdsourced map
updating. For a target road attribute, the method should be able
to filter out a large number of true negatives and only return a
small set of detected candidates to human annotators for further
verification.

Existing road attribute detection methods mostly model this task
as a multi-class classification problem. Based on the data sources
they adopted, existing methods can be roughly divided into two
categories, GPS based and image (e.g., dash-cam videos or satellite
images) based methods. GPS based methods extract road features
from large-scale crowdsourced GPS traces of vehicles. As the raw
GPS traces are simply a sequence of latitude and longitude pairs that
does not contain any information about the true route the vehicle
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Figure 1: Illustration of the challenges for road attribute de-
tection from satellite images or GPS traces alone. Left: a
satellite image with heavy clouds. Right: sparse GPS sam-
ples over a narrow road.

traveled, map matching algorithms [19, 20] must be applied first to
map GPS traces to road segments based on estimated probabilities.
This results in limitations of existing GPS based methods as the
effectiveness of map matching algorithms can be degraded by noisy
GPS traces and incomplete map data. Inspired by the great success
of Convolutional Neural Networks (CNN) on image classification,
satellite imagery based road attribute detection methods have been
proposed recently, which extract road descriptors from high reso-
lution satellite images [6, 12]. Though promising results have been
reported on the detection of a few road attributes, the generality
of this method is limited as many road attributes such as one-way
road and speed limit are barely visible from satellite images.

It is challenging to detect road attributes from a single data
source as every data source has its own limitations. Figure 1 shows
an example where little information about the road can be extracted
from a cloudy satellite image or from a few sparse GPS traces. How-
ever, prior work on multimodal fusion of satellite images and GPS
traces for road attribute detection is very limited, as the two data
sources are in significantly different formats, which makes the fu-
sion non-trivial. To address this issue, we propose to render GPS
traces into a sequence of multi-channel images. The advantages
of our proposed solution are twofold. First, the generated multi-
channel images from GPS traces are spatially aligned with satellite
images on the pixel level. Thus, the two data sources can be easily
fused at the input layer by concatenation where pixel-wise cor-
respondences can be learnt. Second, our proposed method does
not rely on map matching so it is more efficient compared with
traditional GPS based road attribute detection methods. Previous
work on GPS rendering focused on the 2D modeling of latitude and
longitude locations only [22]. Comparatively, our work focuses on
the rendering of bearing and speed as they capture not only the
spatial distribution of the GPS points, but also the local distribution
(i.e., at each pixel) of vehicles’ moving directions and speeds, which
are more important for the road attribute detection. We further
extend the GPS rendering from 2D to 3D to capture the temporal
changes of GPS traces on the road. The key contributions of this
paper are summarized as follows:

• To the best of our knowledge, we present the first spatial-
temporal multimodal fusion framework that learns the pixel-
wise correspondences from the aligned satellite images and
GPS traces for robust road attribute detection.

• We propose to extract informative road features from GPS
traces by rendering location, bearing, and speed into a se-
quence of multi-channel images, which is essentially differ-
ent to and more effective than the traditional GPS based road
attribute detection methods.

• Our multimodal fusion solution can be integrated with ex-
isting network architectures. We demonstrate its effective-
ness by integrating with AlexNet, MobileNet, and DenseNet
where significant performance gain can be obtained when
comparing with single-modal models.

• We have conducted extensive experiments on two real-world
datasets in Singapore and Jakarta. Our method obtains the
state-of-the-art classification accuracy of 91.4%, 76.3%, 86.2%,
and 83.8% on the detection of one-way road, number of lanes,
speed limit, and road type, respectively.

The rest of the paper is organized as follows. First, we report
the important related work in Section 2. Next, we formulate the
problem and introduce our proposed road feature extraction from
multimodal data sources in Section 3. We present our multimodal
fusion network for robust road attribute detection in Section 4 and
evaluate the effectiveness of our proposed approach in Section 5.
Finally, we conclude and suggest future work in Section 6.

2 RELATEDWORK
Early research on road attribute detection has focused extensively
on the feature extraction from GPS traces and probabilistic model-
ing for individual road attributes such as road type [3], road bound-
ary [24], and lane detection [2]. For instance, Chen and Krumm
presented a probabilistic model to derive the number of traffic lanes
from GPS traces [8]. They proposed to use a Gaussian mixture
model to model the distribution of GPS traces across multiple traffic
lanes. Li et al. adopted the Support Vector Machine (SVM) as the
classifier to detect the road class and road name from a combina-
tion of movement trajectories and geotagged social media data [18].
Van et al. proposed to extract different features from GPS traces,
based on which a decision tree was built for each of the road at-
tributes to be detected [23]. Due to the intrinsic noise in GPS data,
map matching algorithms [19, 20, 25, 26] are mostly applied in the
preprocessing to assign each GPS point to the road. Then per-road
features are extracted from the corresponding GPS points that are
matched to it. Finally, road attribute detection is conducted based
on the per-road features extracted in the previous step. The ef-
fectiveness of such GPS-based road attribute detection methods
purely rely on the quality of the GPS traces, where the detection
accuracy can be degraded by inaccurate map matching results and
GPS sparsity.

In addition to GPS traces, recent efforts have been made on inves-
tigating the use of other data sources such as satellite images [12],
dash-cam videos [16], and crowdsourced map data [27] in the de-
tection of missing road attributes. From the perspective of data
coverage and quality, satellite imagery is considered to be one of
the most promising data sources. High quality satellite images have
long been utilized for automatic road network extraction, which
includes deriving the road network geometry and topology [4, 28].
Model architectures such as U-net [21] or Deeplab [7] are usually
adopted to segment an entire satellite image into semantic regions.
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However, compared to the problem of road network extraction, road
attribute detection is far more challenging, given that attributes like
the speed limit are barely visible in satellite images. Recently, He et
al. [12] presented an image-based road attribute detection approach
using Graph Neural Networks (GCN). However, they evaluated
their method on two road attributes (i.e., road type and number
of lanes) only. To extend the scope of the existing methods, joint
analysis of multiple data sources can be an effective way to deal
with more challenging road attributes. Unfortunately, the research
on multimodal feature extraction and fusion from different data
sources is still quite limited in the field of automatic road attribute
detection.

3 ROAD FEATURE MODELING
We propose to extract image-based road features from satellite
images and crowdsourced GPS traces, and model the detection of
each road attribute as an image classification problem. A GPS trace
is mostly given as a sequence of sensor data (including latitude,
longitude, bearing, speed, etc.) ranked by timestamps. Due to the
difference in data format, it remains unclear what is the most ef-
fective way to fuse GPS data with satellite images for robust road
attribute detection. Targeting at this problem, we introduce how
we extract and fuse the image-based road features from both satel-
lite images and GPS traces, followed by discussions on the key
parameter settings in our proposed framework.

3.1 Satellite Images
To extract road features from satellite images, we first extract road
networks from OpenStreetMap which provides a free and user-
generated map of the world [10]. Next, we crop a satellite image at
the center of each road segment as the road feature to be passed
to the classifier. We set the image resolution corresponding to the
zoom level 18 of the OpenStreetMap, where each pixel approxi-
mately represents 0.596 m on the Equator. Yin et al. [27] proposed
to use the images of the local map data for road attribute detection.
We are interested in utilizing this feature as an additional input in
the future. Thus, we set the resolution of the satellite images to be
consistent with the zoom levels of the map data to facilitate the
feature fusion. He et al. [12] proposed to use a higher resolution
at 12.5 cm/pixel to capture details on the road such as lane mark-
ings. However, the coverage and availability of such high resolution
satellite images are very low. We set the size of each cropped image
to 224 × 224, corresponding to a 134 × 134 meter tile on each road
segment. Such an image contains not only the road, but also the
surrounding environment around the road, which can be helpful
for the missing road attribute detection as well [27].

3.2 Crowdsourced GPS Traces
A GPS trace is defined to be a sequence of records associated with
timestamps. Each record consists of location, bearing, and speed
returned by sensors. The location of a GPS record is usually rep-
resented by the latitude and longitude pair. The bearing is the
clock-wise angle of the device’s moving direction with respect to
the earth’s true north direction. A raw GPS trace is noisy and does
not contain the information of the true route the vehicle travelled.
Therefore, traditional GPS-based road attribute detection methods
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Figure 2: Comparison of (b) our proposed GPS rendering to
(a) conventional map-matching based road feature extrac-
tion methods.

mostly perform map matching algorithms [20] to find the group
of traces that are associated with each road segment in the prepro-
cessing phase. Figure 2 illustrates the different strategies of (a) the
conventional and (b) our proposed road feature extraction methods.
As shown in Figure 2 (a), conventional road feature extraction meth-
ods first predict the road ID associated with each GPS point based
on map matching. Then, given the ID of a target road, statistics
such as distributions are extracted from the corresponding GPS
records. Thereby roads are represented by hand-crafted feature
vectors. Comparatively, we propose to directly render GPS traces
into a multi-channel feature map, at the center coordinate of the
target road. The multi-channel feature map is generated by extract-
ing per-pixel distributions for the number of GPS traces, bearing,
and speed, which can be easily fused with satellite images as they
are spatially aligned at the pixel level. CNNs are next adopted to
learn the final road representations, which are more robust and
informative compared to the hand-crafted road features used in
conventional methods. Moreover, as map matching is not applied,
our method is more efficient when dealing with large amount of
GPS data. It is also less sensitive to the quality of the map data.
This is because map matching is conducted on the global road net-
work whereby its performance can be degraded by missing roads.
Our method, on the other hand, only utilizes the local information
(e.g., location and orientation) of the target road when generating
features for it.

Formally, let 𝑃𝑖 = {𝑝𝑖1, 𝑝
𝑖
2, ..., 𝑝

𝑖
𝑚} denote the set of GPS points

that fall into the nearby region of road segment 𝑟𝑖 , and where
𝑝𝑖
𝑗
= (𝑙𝑎𝑡𝑖

𝑗
, 𝑙𝑜𝑛𝑖

𝑗
, 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖

𝑗
, 𝑠𝑝𝑒𝑒𝑑𝑖

𝑗
) is a 4-tuple that contains the

readings of latitude, longitude, bearing, and speed. We render the
GPS points 𝑃𝑖 into a 224 × 224 multi-channel image at the same
resolution of the satellite images as illustrated in Algorithm 1. Let
𝐺𝐿𝑖 ,𝐺𝐵𝑖 , and𝐺𝑆𝑖 represent the corresponding channels generated
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Algorithm 1: 2D GPS Traces Rendering
Input: A set of GPS points 𝑃𝑖 in the nearby region of a road

segment 𝑟𝑖
Output: A multi-channel image 𝐺𝑖 as the feature extracted

from 𝑃𝑖 for road segment 𝑟𝑖
3D Array 𝐺𝐿𝑖 , 𝐺𝐵𝑖 , 𝐺𝑆𝑖 ;
/* 𝐺𝐿𝑖,𝐺𝐵𝑖, and 𝐺𝑆𝑖 are the image channels

generated based on location, bearing, and
speed, respectively. */

for each point 𝑝𝑖
𝑗
in 𝑃𝑖 do

/* 𝑝𝑖
𝑗
= (𝑙𝑎𝑡𝑖

𝑗
, 𝑙𝑜𝑛𝑖

𝑗
, 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖

𝑗
, 𝑠𝑝𝑒𝑒𝑑𝑖

𝑗
) is a

4-tuple that contains the readings of
latitude, longitude, bearing, and speed. */

𝑥 , 𝑦=locate_pixel(𝑙𝑎𝑡𝑖
𝑗
, 𝑙𝑜𝑛𝑖

𝑗
, 𝑟𝑖 );

update_location_channel(𝐺𝐿𝑖 , 𝑥 , 𝑦) //based on Eq. 1;
update_bearing_channel(𝐺𝐵𝑖 , 𝑥 , 𝑦, 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖

𝑗
) //based on

Eq. 2;
update_speed_channel(𝐺𝑆𝑖 , 𝑥 , 𝑦, 𝑠𝑝𝑒𝑒𝑑𝑖

𝑗
) //based on

Eq. 3;
𝐺𝑖=Concat((𝐺𝐿𝑖 , 𝐺𝐵𝑖 , 𝐺𝑆𝑖 ),axis=-1);
kernel_smoothing(𝐺𝑖 ) //based on moving average;
normalization(𝐺𝑖 ) //based on Eq. 4;
return 𝐺𝑖 ;

based on location, bearing, and speed, respectively. For each GPS
point 𝑝𝑖

𝑗
∈ 𝑃𝑖 , we first transform it to the pixel location, given as

(𝑥 , 𝑦), in the image, and then update 𝐺𝐿𝑖 , 𝐺𝐵𝑖 , and 𝐺𝑆𝑖 as below.

Update Location Channel. 𝐺𝐿𝑖 is defined to be a single-channel
image. It counts the number of GPS points that are projected onto
each pixel. Let 𝐺𝐿𝑖 (𝑥,𝑦) denote the element at (𝑥,𝑦) in image 𝐺𝐿𝑖 .
Then, 𝐺𝐿𝑖 is updated by

𝐺𝐿𝑖 (𝑥,𝑦) = 𝐺𝐿𝑖 (𝑥,𝑦) + 1 (1)

Update Bearing Channel. 𝐺𝐵𝑖 is defined to be a𝑀𝑏 -channel im-
age where 𝑀𝑏 is the number of bins we adopted to quantize the
bearing values in degree into a histogram at each pixel. Let 𝐵𝑖𝑛𝑏
denote the bin size to generate the bearing histogram, we update
𝐺𝐵𝑖 given a GPS point 𝑝𝑖

𝑗
with 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖

𝑗
at (𝑥 , 𝑦) in the image as

𝐺𝐵𝑖 (𝑥,𝑦, 𝑖𝑛𝑡 (𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖𝑗/𝐵𝑖𝑛𝑏 ))

= 𝐺𝐵𝑖 (𝑥,𝑦, 𝑖𝑛𝑡 (𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖𝑗/𝐵𝑖𝑛𝑏 )) + 1
(2)

Update Speed Channel. 𝐺𝑆𝑖 is defined to be a𝑀𝑠 -channel image
where𝑀𝑠 is the number of bins we adopted to quantize the speed
values in m/s into a histogram at each pixel. Let 𝐵𝑖𝑛𝑠 denote the
bin size to generate the speed histogram, we update 𝐺𝑆𝑖 given a
GPS point 𝑝𝑖

𝑗
with 𝑠𝑝𝑒𝑒𝑑𝑖

𝑗
at (𝑥 , 𝑦) in the image as

𝐺𝑆𝑖 (𝑥,𝑦, 𝑖𝑛𝑡 (𝑠𝑝𝑒𝑒𝑑𝑖𝑗/𝐵𝑖𝑛𝑠 ))

= 𝐺𝑆𝑖 (𝑥,𝑦, 𝑖𝑛𝑡 (𝑠𝑝𝑒𝑒𝑑𝑖𝑗/𝐵𝑖𝑛𝑠 )) + 1
(3)

Next, we concatenate𝐺𝐿𝑖 ,𝐺𝐵𝑖 , and𝐺𝑆𝑖 to form a (1+𝑀𝑏 +𝑀𝑠 )-
channel image as the image-based feature extracted fromGPS traces
for road segment 𝑟𝑖 . Finally, to reduce the impact of the intrinsic

Figure 3: GPS rendering results after applying kernel
smoothing. From left to right: rendering of the (a) original
GPS traces, (b) smoothed GPS traces with kernel=3, and (c)
smoothed GPS traces with kernel=5.

noise and the uneven distribution of GPS traces on the rendering
result, we apply kernel smoothing and normalization as described
below to obtain the final image-based feature 𝐺𝑖 extracted from
GPS.

Kernel Smoothing. As shown in Figure 3, with a high rendering
resolution at 0.6 m/pixel, the projection of the original GPS points
around a road segment 𝑟𝑖 can be noisy and sparse. To address this
issue, we smooth each channel of 𝐺𝑖 by computing the moving
average over a square kernel with size 𝐾 . Figure 3 shows the mov-
ing average rendering of the GPS points with 𝐾 = 3 and 𝐾 = 5.
Alternative weighting functions such as 2D Gaussian kernel [11]
can be adopted, but the parameters need to be tuned based on the
characteristics of the GPS data.

Normalization. The distribution of GPS traces on roads can be
unbalanced due to different road types or locations [5]. To reduce
the impact of GPS disparity, we normalize 𝐺𝐿𝑖 , 𝐺𝐵𝑖 , and 𝐺𝑆𝑖 by

𝐺𝐿𝑖 (𝑥,𝑦) = 𝐺𝐿𝑖 (𝑥,𝑦)/max{𝑥 ′,𝑦′ }𝐺𝐿𝑖 (𝑥 ′, 𝑦′)

𝐺𝐵𝑖 (𝑥,𝑦) = 𝐺𝐵𝑖 (𝑥,𝑦)/∑𝑀𝑏−1
𝑐′=0 𝐺𝐵𝑖 (𝑥,𝑦, 𝑐 ′)

𝐺𝑆𝑖 (𝑥,𝑦) = 𝐺𝑆𝑖 (𝑥,𝑦)/∑𝑀𝑠−1
𝑐′=0 𝐺𝑆𝑖 (𝑥,𝑦, 𝑐 ′)

(4)

to obtain the final GPS rendering result 𝐺𝑖 . The location channel
is normalized based on the max value over all the pixels, while
the bearing and speed channels are normalized based on the sum
over all the respective channels at each pixel. In other words, we
normalize the location at the image level and normalize the bearing
and speed at the pixel level to make them complementary to each
other.

3.3 Calibration based on Road Direction
To reduce the impact of road directions on the extraction of road
features, we calibrate the road features in the following two as-
pects. First, we rotate both the satellite images and the GPS based
multi-channel images to ensure that the road direction is always
horizontal in the image [12]. Second, instead of using the absolute
bearing values in the GPS traces, we compute the angle distance be-
tween the moving direction of the vehicle and the direction of road
segment 𝑟𝑖 to calculate 𝐺𝐵𝑖 [27]. This is based on the observation
that some road attributes such as the one-way/two-way road can
be more correlated with the relative angle rather than the absolute
bearing values.
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Figure 4: Network architecture of our proposed multimodal fusion network for robust road attribute detection.

Both calibration methods strengthen the features around the
roads while weaken the features of the surrounding environments.
This is especially helpful for the detection of road attributes such
as the number of lanes as the road width can be more easily recog-
nized after calibration. However, the detection of some other road
attributes such as the speed limit and road type may also rely on
the features of the surrounding environments, e.g., residential roads
are always within residential areas. It may weaken the feature con-
sistency of the surrounding environments too much by applying
both calibration methods, resulting in less satisfactory detection
rates of certain road attributes.

3.4 From 2D to 3D GPS Rendering
We have introduced how to render GPS traces into a multi-channel
image in Section 3.2. When sufficient GPS traces are available, it is
beneficial to extend the GPS rendering from 2D to 3D by introducing
a third time axis. For example, assume that we have one day’s
GPS trajectories of all the taxi drivers in a city. It is unnecessary
to perform the 2D rendering using the whole day’s GPS data as
oversampling will only introduce significant computational cost.
One way to make use of the data is to split a 24-hour day into time
slots and extract multiple road features from each of the time slots.
The interval of the time slot should be chosen based on the data.
Basically, the GPS traces in each time slot should have a reasonable
dense coverage over the area of interest.

Formally, let us divide the time axis into 𝑇 time bins with
equal duration. In each time bin 𝑡 , we generate a multi-channel
image 𝐺𝑖

𝑡 using only the GPS traces that are within time bin
𝑡 . Subsequently, the 3D GPS rendering result can be written as
𝐺𝑖
3𝐷 = {𝐺𝑖

0,𝐺
𝑖
1, ...,𝐺

𝑖
𝑇
}. The advantages of the 3D GPS rendering

are twofold. First, it scatters GPS noise into different time bins and
thus reduces its impact on the overall representation. Second, it
effectively captures the temporal changes of GPS traces on the road.
The patterns of GPS data are different during peak and non-peak
hours, which can be an important feature for the detection of some
road attributes such as the road type classification.

4 MULTIMODAL FUSION FOR ROAD
ATTRIBUTE DETECTION

For each road with a missing road attribute (e.g., road type and
speed limit) that we would like to detect, we extract the image-
based road features from both satellite images and crowdsourced

Table 1: Categories of the four road attributes to be detected.

Road attributes Category
One/Two Way one-way road, two-way road
No. of Lanes 1, 2, 3, 4, 5, 6
Speed Limit (km/h) 40, 50, 60, 70, 80, 90
Road Type residential, primary, secondary, tertiary,

service, footway

GPS traces, and model the detection of the missing road attribute
as an image classification problem. As shown in Figure 4, we adopt
a network architecture comprised of different modules, including a
spatial modeling sub-network with five convolutional layers and
two fully-connected layers, a temporal modeling sub-network with
one bi-directional GRU layer followed by average pooling, and one
classification layer. We adopt a kernel size of 3 and set the number
of filters to 64, 128, 256, 256, and 256, respectively. A stride of 1
is adopted in the last three convolutional layers, while a stride of
2 is adopted in the rest convolutional layers and the max pooling
layers. In this paper, we target at four road attributes, namely one-
way/two-way road, number of lanes, speed limit, and road type.
The categories for each road attribute are shown in Table 1. Taking
road type as an example, the classifier will output probability scores
over the six categories and the one with the highest probability
score will be selected as the final prediction. The cross-entropy loss
is adopted for model optimization.

By rendering GPS traces into multi-channel images, multimodal
fusion can be directly conducted at the input layer. For 3D GPS
rendering, we concatenate the satellite RGB image to the multi-
channel GPS image in each time bin and use the network shown in
Figure 4 to perform road attribute detection. For 2D GPS rendering,
we simply concatenate the RGB channels of the satellite image
and the location, bearing, and speed channels generated from the
GPS traces as the input. In this case, the input does not contain
any temporal features, so we remove the temporal modeling sub-
network to conduct road attribute detection. This fusion strategy
has the advantage of being able to learn filters from the multimodal
features directly as the satellite images and the GPS traces are
spatially aligned at the same rendering resolution.
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Table 2: Numbers of samples in the training/testing datasets for the four road attributes.

Dataset One/Two Way No. of Lanes Speed Limit Road Type
Singapore 15049/3763 10413/2667 7553/1923 13556/3388
Jakarta 5398/1350 3404/881 - 4171/1017

Table 3: Road attribute classification accuracy comparison based on satellite images, GPS traces, and their fusion.

Classifier Singapore Jakarta
One/Two
Way

No. of
Lanes Speed Limit Road Type One/Two

Way
No. of
Lanes Road Type

Satellite 0.7778 0.6430 0.7374 0.6942 0.8200 0.6288 0.6411
GPS - 2D 0.8198 0.6678 0.7722 0.6671 0.8089 0.5970 0.6332
GPS - 3D 0.8297 0.6865 0.8040 0.7075 0.8267 0.6311 0.6588

Fusion - 2D 0.8488 0.6967 0.8045 0.7624 0.8289 0.6470 0.7178
Fusion - 3D 0.8546 0.7132 0.8242 0.7904 0.8363 0.6606 0.7355

5 EVALUATION
We first introduce the experimental setup in Section 5.1, and then
proceedwith the evaluation of our proposed road attribute detection
framework. We compare the effectiveness of the satellite images,
GPS trajectories, and their fusion in the detection of four road
attributes, namely one-way/two-way road, number of lanes, speed
limit, and road type. Next, we perform an ablation analysis on the
settings of bin number and kernel size for GPS feature generation
to verify the design of our proposed model. Finally, we compare
our proposed multimodal model to seven state-of-the-art methods
to demonstrate its effectiveness in road attribute detection.

5.1 Experimental Setup
We evaluated our proposed methods based on two large-scale real-
world datasets in Singapore and Jakarta, respectively. To prepare the
datasets, we derive the ground-truth labels of four road attributes,
namely one-way/two-way road, number of lanes, speed limit, and
road type, from the OpenStreetMap data. We remove the road
segments without ground-truth labels and randomly divide the
remaining into 80%-20% splits for training and testing. The number
of training and testing samples for each road attribute is illustrated
in Table 2. We are unable to perform speed limit detection on the
Jakarta dataset as only a few roads in Jakarta are annotated with the
speed limit label. For feature extraction, we use satellite imagery
fromDigitalGlobe and three-hour (i.e., 4:00 pm - 7:00 pm) real-world
GPS traces of in-transit Grab drivers in Singapore and Jakarta [15].
We divide the GPS traces into three one-hour time bins for 3D GPS
rendering. The sampling rate of the GPS traces are mostly 1 Hz
in our experiments. For optimization, we use the Adam optimizer
with a learning rate of 0.001 and a batch size of 32. For comparison,
we report the overall classification accuracy and the per-class F-
measure as the evaluation metrics.

5.2 Model Justification
We first compared the classification accuracy obtained based on
satellite images only, GPS traces only, and their fusion. The results
are reported in Table 3 with the best result highlighted in each

column. In this experiment, the number of bins to generate the
bearing and speed channels from GPS traces were set to 𝑀𝑏 = 3
and𝑀𝑠 = 3, respectively. The kernel size for GPS smoothing was
set to 9 × 9. The tuning of these parameters will be evaluated and
discussed in the next section.

The classifiers trained on satellite images or GPS traces have
their own limitations. For example, the visibility of roads may not
always be good due to occlusions caused by trees, buildings, or even
heavy clouds in a satellite image. The crowdsourced GPS traces,
on the other hand, contain intrinsic noise resulting in incorrectly
placed GPS points off the road. Generally speaking, the classifiers
trained in Singapore performed better than those trained in Jakarta.
From Table 2 we can see that the quality of the Singapore dataset
is better as the number of roads with ground-truth attribute labels
is much higher than that in Jakarta. Next, we compare the perfor-
mance with input features generated from either 2D or 3D GPS
rendering. On both datasets, GPS-3D and Fusion-3D outperformed
GPS-2D and Fusion-2D in all the cases. This is because the input
feature generated from 3D GPS rendering is more descriptive as
it captures not only the spatial distributions but also the tempo-
ral changes of the GPS traces on the road. Fusion-3D significantly
improved the classification accuracy compared to the individual
classifiers trained on satellite images and GPS traces separately.
On the road type detection, the classification accuracy has been
improved by 11.6% ∼ 14.7%, which demonstrates the effectiveness
of our proposed approach.

The per-class F-measure comparison of the 2D classifiers trained
based on satellite images, GPS traces, and their fusion is shown in
Figure 5. F-measure is computed as 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , which con-
siders both precision and recall. For speed limit detection, the GPS
based classifier outperformed the satellite image based classifier in
most of the cases except the class of 40 km/h. This is because GPS
traces contain vehicle’s bearing and speed information, which is
missing from the satellite images. Such sensor data provides addi-
tional information for road attribute detection. However, one issue
is that such sensor data can be noisy especially when the vehicle’s
speed is low. For road type detection, the satellite image based
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Figure 5: Per-class F1measure of road attribute detection based on satellite images, GPS traces, and their fusion on the detection
of speed limit and road type.

   
  4

0 
   

   
  5

0 
   

   
  6

0 
   

   
  7

0 
   

   
  8

0 
   

   
  9

0 
   

Predicted label

     40    

     50    

     60    

     70    

     80    

     90    

T
ru

e
 l
a
b
e
l

0.7 0.27 0.02 0.0 0.0 0.0

0.06 0.88 0.05 0.02 0.0 0.0

0.02 0.21 0.74 0.03 0.0 0.0

0.0 0.13 0.15 0.71 0.02 0.0

0.0 0.13 0.0 0.07 0.6 0.2

0.0 0.24 0.06 0.0 0.0 0.71

Normalized confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Singapore, speed limit

re
si
de

nt
ia
l

se
rv

ic
e

pr
im

ar
y

se
co

nd
ar

y

te
rt
ia
ry

fo
ot

w
ay

Predicted label

residential

service

primary

secondary

tertiary

footway

T
ru

e
 l
a
b
e
l

0.77 0.12 0.02 0.03 0.04 0.03

0.1 0.84 0.01 0.01 0.02 0.02

0.03 0.0 0.82 0.06 0.03 0.06

0.11 0.04 0.06 0.66 0.07 0.07

0.09 0.08 0.01 0.09 0.69 0.03

0.07 0.28 0.07 0.05 0.01 0.5

Normalized confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Singapore, road type

re
si
de

nt
ia
l

se
rv

ic
e

pr
im

ar
y

se
co

nd
ar

y

te
rt
ia
ry

fo
ot

w
ay

Predicted label

residential

service

primary

secondary

tertiary

footway

T
ru

e
 l
a
b
e
l

0.89 0.06 0.01 0.01 0.02 0.01

0.11 0.73 0.09 0.02 0.02 0.02

0.06 0.25 0.57 0.02 0.01 0.08

0.06 0.16 0.12 0.53 0.1 0.02

0.37 0.14 0.05 0.03 0.38 0.03

0.06 0.24 0.22 0.08 0.08 0.31

Normalized confusion matrix

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Jakarta, road type

Figure 6: Confusion matrix of our proposed multimodal road attribute detection method on the detection of speed limit and
road type.

classifier performed better on classes of “Residential”, “Service”,
and “Footway”, while the GPS based classifier performed better on
classes of “Primary”, “Secondary”, and “Tertiary”. The same trend
shows on both the Singapore dataset and the Jakarta dataset. This
is because the contextual information in a satellite image shows
the surrounding environment around a road. Thus, it helps with
the detection of certain road types such as residential roads that
are around residential areas and service roads that are for access
to parking, driveways, and alleys. On the other hand, classes of
“Primary”, “Secondary”, and “Tertiary” define themost, secondmost,
and third most important roads in a country’s road network system.
Both the number of vehicles travelled on these roads and the quality
of the corresponding GPS traces tend to be high. So the GPS based
classifier tends to recognize such road types more easily.

Finally, we show the confusion matrix obtained by our proposed
2D multimodal road attribute detection method in Figure 6. For
speed limit detection, the number of test samples for the six classes
are 415, 1075, 299, 102, 15, and 17, respectively. We can see that
most confusions are between common and rare classes. Due to
the class imbalance, the detection of samples from rare classes is
more challenging as the classifier tends to favor the majority class.
For road type detection, the classifiers trained in both Singapore
and Jakarta can recognize “Residential” and “Service” roads easily.
“Primary”, “Secondary”, and “Tertiary” roads can be recognized
more easily in Singapore than in Jakarta. One possible reason is
that the number of training samples for those categories is not
sufficient in the Jakarta dataset due to the lack of the ground-truth
road type labels in the OpenStreetMap data.

5.3 Ablation Study on GPS Rendering
To better understand our proposed method, we performed an abla-
tion analysis on the key parameter settings in the GPS rendering.
We first study the impact of the number of bins/channels𝑀𝑏 and
𝑀𝑠 that we used to render the sensor data into images. The GPS-2D
classifier is used in this ablation study and the results are reported
in Table 4. The first row reports the classification accuracy obtained
by training with GPS locations only, which serves as a baseline
when other sensor data is not available in the GPS traces. Recall
that we render the GPS locations into a single-channel image 𝐺𝐿
that captures the spatial distribution of the GPS points by counting
the number of GPS points that are projected onto each pixel. Com-
paratively, the𝑀𝑏 -channel image𝐺𝐵 and the𝑀𝑠 -channel image𝐺𝑆
rendered from bearing and speed tend to bemore descriptive as they
capture not only the spatial distribution of the GPS points, but also
the local distribution of vehicles’ moving directions and speeds at
each pixel. By comparing the results shown in 2-4 rows, we can see
that improved classification accuracy can be obtained by increasing
the number of channels𝑀𝑏 and𝑀𝑠 especially for the detection of
speed limit and road type. The last row in the table shows the clas-
sification accuracy obtained by training based on the fusion of𝐺𝐿,
𝐺𝐵, and𝐺𝑆 , where the input𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡 ((𝐺𝐿,𝐺𝐵,𝐺𝑆), 𝑎𝑥𝑖𝑠 = −1).
As features extracted from GPS location, bearing, and speed capture
complementary information, the classifier trained on 7-channel 𝐺
outperformed the classifier trained on 7-channel𝐺𝐵 or 7-channel
𝐺𝑆 in the six out of the seven cases.

Next, we study the impact of the kernel size we adopted for GPS
smoothing. We set the kernel size to 1×1, 3×3, 5×5, 7×7, 9×9, and
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Table 4: Road attribute detection based on GPS traces with different sensor data and varying bins.

Sensor Data Bin No. Singapore Jakarta
One/Two
Way

No. of
Lanes Speed Limit Road Type One/Two

Way
No. of
Lanes Road Type

GPS 1 0.7736 0.6393 0.6828 0.6012 0.7933 0.5800 0.6185
Bearing 3 0.8129 0.6423 0.7431 0.6281 0.8081 0.5823 0.6214
Bearing 7 0.8134 0.6562 0.7546 0.6420 0.8059 0.5845 0.6352
Speed 3 0.7962 0.6475 0.7249 0.6434 0.7844 0.5664 0.6155
Speed 7 0.7914 0.6490 0.7421 0.6600 0.7956 0.5834 0.6185

GPS+B.+S. 1+3+3 0.8198 0.6678 0.7722 0.6671 0.8089 0.5970 0.6332

Table 5: Road attribute detection based on GPS traces smoothed using kernels of different sizes.

Kernel Size Singapore Jakarta
One/Two
Way

No. of
Lanes Speed Limit Road Type One/Two

Way
No. of
Lanes Road Type

1 × 1 0.7853 0.6123 0.6417 0.5962 0.7837 0.5619 0.5929
3 × 3 0.8023 0.6457 0.7067 0.6346 0.7941 0.5709 0.6028
5 × 5 0.8087 0.6494 0.7343 0.6479 0.7948 0.5811 0.6205
7 × 7 0.8177 0.6530 0.7540 0.6588 0.8059 0.5800 0.6224
9 × 9 0.8198 0.6678 0.7722 0.6671 0.8089 0.5970 0.6332
11 × 11 0.8222 0.6599 0.7618 0.6741 0.8096 0.5959 0.6293

11×11 and report the results in Table 5. The advantages of applying
kernel smoothing to GPS traces are twofold. First, it helps reduce
the negative impact caused by sensor noise. Second, crowdsourced
GPS traces can be sparse in some regions where pixels on a road can
have no GPS points projected to it, especially when we render at a
high resolution. As Table 5 shows, classifiers trained with smoothed
GPS traces outperformed the classifiers trained with the original
GPS traces by a large margin. We consider a kernel size of 9 × 9 to
be a good choice based on the experimental results on our datasets,
and use this as the optimal setting in the rest of the experiments.

5.4 Comparison with the State-of-the-arts
We compare our proposed method to two types of state-of-the-art
approaches. First, our proposed multimodal fusion solution can be
easily integrated with any existing network architectures to train
an end-to-end classifier for road attribute detection. For verification,
we compared our proposed method to a number of state-of-the-art
image classification architectures including AlexNet [17], Mo-
bileNet [13], and DenseNet [9]. Table 6 reports the classification
accuracy based on different combinations of model architectures
and calibration methods on the Singapore dataset. The size of the
AlexNet is similar to our baseline network, both of which consist
of five convolutional layers followed by ReLU activations. AlexNet
adopted a kernel size of 11×11 and 5×5 respectively in the first two
convolutional layers, which is the biggest among the four models.
Comparatively, MobileNet and DenseNet went much deeper. To
improve a model’s efficiency, MobileNet factorized a standard 2D
convolution into a depthwise convolution and a 1 × 1 pointwise
convolution. DenseNet divided the network into multiple densely
connected dense blocks composed of narrow layers, which are con-
nected by transition layers that perform 1× 1 convolution and 2× 2

average pooling. DenseNet have been utilized for satellite image
processing such as land use classification in previous work where
promising results have been obtained [9]. From the results we can
see that our proposed 2D method performed competitively well
with MobileNet and DenseNet, while our proposed 3D method ob-
tained the best result on the detection of all the four road attributes.

Next, we analyze the effectiveness of the road direction based
calibration methods described in Section 3.3. Table 6 shows the
classification accuracy together with the performance gain w.r.t
the classifiers trained without applying any calibrations (i.e., the
results reported in the first row). On one hand, by applying both
image rotation and bearing adjustment calibrations, our model
significantly improved the detection accuracy of the one-way/two-
way road and the number of lanes by 6.9% and 7.0%, respectively. On
the other hand, for speed limit and road type, the best detection rates
were obtained by applying the bearing adjustment calibration only.
One possible reason is that the detection of these road attributes
partially relies on the features of the surrounding environments. For
example, highways in the same downtown area may have similar
speed limit and residential roads are always within the residential
area. However, both image rotation and bearing adjustment tend to
weaken the feature consistency of the surrounding environments
as the former changes the pixel location and the latter changes
the pixel feature. The best classification accuracy obtained by our
model is 91.4%, 76.3%, 86.2%, and 83.8% for one-way/two-way road,
number of lanes, speed limit, and road type detection, respectively.

Finally, we compare our proposed approach to four state-of-
the-art road attribute detection methods. Van et al. [23] utilized
decision trees as the classifiers to detect road attributes from hand-
crafted GPS features extracted with map matching. He et al. [12]
utilized CNNs or GCNs as the classifiers to detect road attributes
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Table 6: Classification accuracy comparison to the state-of-the-art CNN architectures and evaluation on the calibrations based
on road directions.

Calibration Method One/Two
Way Gain No. of

Lanes Gain Speed Limit Gain Road Type Gain

AlexNet [17] 0.8299 - 0.6610 - 0.7473 - 0.7308 -
MobileNet [13] 0.8307 - 0.6742 - 0.8008 - 0.7651 -

None DenseNet [14] 0.8366 - 0.6775 - 0.7982 - 0.7659 -
Ours - 2D 0.8488 - 0.6967 - 0.8045 - 0.7624 -
Ours - 3D 0.8546 - 0.7132 - 0.8242 - 0.7904 -

AlexNet [17] 0.8456 1.9% 0.7019 6.2% 0.7509 0.5% 0.7373 0.9%
- image MobileNet [13] 0.8666 4.3% 0.7229 7.2% 0.7826 - 0.7972 4.2%
rotation DenseNet [14] 0.8538 2.1% 0.7289 7.6% 0.7956 - 0.7952 3.8%

Ours - 2D 0.8669 2.1% 0.7225 3.7% 0.7972 - 0.7881 3.4%
Ours - 3D 0.8724 2.1% 0.7439 4.3% 0.8107 - 0.8132 2.9%

AlexNet [17] 0.8411 1.3% 0.6337 - 0.6984 - 0.7470 2.2%
- bearing MobileNet [13] 0.8469 2.0% 0.6625 - 0.7754 - 0.8076 5.6%
adjustment DenseNet [14] 0.8576 2.5% 0.6757 - 0.8060 1.0% 0.8200 7.1%

Ours - 2D 0.8738 2.9% 0.7019 0.7% 0.8300 3.2% 0.8070 5.8%
Ours - 3D 0.8742 2.3% 0.7263 1.8% 0.8617 4.5% 0.8383 6.1%

- image AlexNet [17] 0.8836 6.5% 0.7278 10.1% 0.7353 - 0.7211 -
rotation MobileNet [13] 0.8937 7.6% 0.7402 9.8% 0.7852 - 0.8117 6.1%

& DenseNet [14] 0.9091 8.7% 0.7413 9.4% 0.7894 - 0.7869 2.7%
bearing Ours - 2D 0.9059 6.7% 0.7447 6.9% 0.7795 - 0.7834 2.8%

adjustment Ours - 3D 0.9136 6.9% 0.7630 7.0% 0.8159 - 0.8070 2.1%

Table 7: Comparison to the state-of-the-art road attribute detection methods in terms of the classification accuracy.

Method GPS Satellite
image

Map
matching

One/Two
Way

No. of
Lanes Speed Limit Road Type

Van et al. [23] ✓ ✗ ✓ 0.8359 - - -
He et al. [12] ✗ ✓ ✗ 0.7826 0.6419 0.7592 0.6992
Yin et al. [27] ✓ ✓ ✓ 0.8828 0.6869 0.7629 0.7287
Sun et al. [22] ✓ ✓ ✗ 0.8121 0.6633 0.7587 0.7409
Ours - 2D ✓ ✓ ✗ 0.9059 0.7447 0.8300 0.8070
Ours - 3D ✓ ✓ ✗ 0.9136 0.7630 0.8617 0.8383

from satellite images. Yin et al. [27] extracted hand-crafted GPS
features with map matching, processed GPS and images with two
separate sub-networks, and fused the features before the classifica-
tion layer. Sun et al. [22] performed GPS rendering without map
matching, and fused GPS and images at the input layer. CNNs are
adopted as the classifiers.

More specifically, Van et al. [23] proposed a GPS-based method
that compares the heading of GPS points and the heading of the
road. It clustered the points into three categories: “similar”, “oppo-
site”, and “outliers” based on a threshold of 20 degrees. Points in the
“outliers” cluster were removed, and a road was considered to be
one-way if the percentage of the number of points in the “similar”
cluster is larger than 0.9. The drawback of this method is that it
failed to provide a solution for the number of lanes and road type
detection. The speed limit decision tree was also performed poorly
on our dataset possibly due to the difference between countries and
geographic regions. He et al. [12] proposed an image-based road
attribute detection method. We compared to their CNN baseline

as we filtered out a significant number of unlabeled OSM roads,
which creates difficulties in modeling the remaining roads in our
datasets as a graph. In their original paper, they used satellite im-
ages with a very high resolution at 12.5 cm/pixel to capture the
details on the road such as lane markings. However, this method
performs less satisfactorily when the image resolution decreases.
Yin et al. [27] extracted 1D hand-crafted features frommap-matched
GPS traces, which were next fused with visual features based on
the two-stream fusion strategy. In their original paper, the visual
features were extracted from the images of the local map data. Here
we replaced the map visualization with the satellite image as the
visual input to make it a fair comparison. One drawback of this
method is that it relies on the results of map matching, which can
be sensitive to the quality of both GPS traces and map data. More-
over, the 1D GPS features and the 2D satellite images can only be
combined based on late fusion, where pixel-wise correspondences
between the two data sources cannot be learnt. Our method, on the
other hand, directly renders GPS traces into 2D images. Thereby
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GPS features and satellite images can be effectively fused at the
input layer, based on which more dense and robust features can be
automatically learnt. A similar idea has been presented by Sun et
al. [22] that rendered GPS traces into a 3-channel image to fuse
with satellite imagery. However, their rendering strategy is less
effective than our proposed method as we simultaneously modeled
the global distribution of the GPS points, the local distribution of
vehicles’ moving directions and speeds at each pixel, and their tem-
poral changes. By applying the calibration method, we are able to
obtain the best road attribute detection accuracy of 0.9136, 0.7630,
0.8617, and 0.8383 on the four road attributes, respectively.

6 CONCLUSION AND FUTUREWORK
We present a multimodal fusion framework that learns from both
satellite images and crowdsourced GPS traces for robust road at-
tribute detection. In order to learn multimodal pixel-wise corre-
spondences, we propose to render GPS traces into a sequence of
multi-channel images that align with satellite imagery in the spatial
domain. Moreover, our proposed GPS rendering method does not
require map matching to preprocess the raw GPS traces. Thus, our
method is more efficient and less sensitive to the quality of the
map data compared to traditional map matching based road feature
extraction methods. For evaluation, we collected two real-word
datasets in Singapore and Jakarta, respectively. We performed an
ablation study on the key parameters of GPS rendering, and evalu-
ated the effectiveness of our proposed multimodal fusion approach
on four road attributes, namely one-way or two-way road, number
of lanes, speed limit, and road type.

In the future, we plan to extract road features from more data
sources such as local map data, street views, accelerometers, gyro-
scopes, etc., to further improve the road attribute detection accuracy.
We would also like to detect not only static but also dynamic road
attributes, e.g., the congestion level of a road in a day.
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