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ABSTRACT

GPS coordinates are fine-grained location indicators that are

difficult to be effectively utilized by classifiers in geo-aware

applications. Previous GPS embedding methods are mostly

tailored for specific problems that are taken place within areas

of interest. When it comes to the scale of the entire planet,

existing approaches always suffer from extensive computational

cost and significant information loss. To solve these issues, we

present a novel two-level grid based framework to learn semantic

embeddings for geo-coordinates worldwide. The Earth’s surface

is first discretized by the Universal Transverse Mercator (UTM)

coordinate system. Each UTM zone is next processed as a local

area of interest that is further divided into fine-grained cells to

perform the initial GPS encoding. We train a neural network in

each UTM zone to learn the semantic embeddings from the initial

GPS encoding. The training labels can be automatically derived

from large-scale geotagged documents such as tweets, check-ins,

and images that are available from social sharing platforms. We

evaluate the effectiveness of our proposed GPS embeddings in geo-

tagged image classification. Improved classification results have

been obtained based on a simple early feature fusion technique.
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• Information systems→ Social networks;Document represen-
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1 INTRODUCTION

Towards encoding semantics on GPS coordinates, researchers have

leveraged a variety of supplementary data sources to extract se-

mantic contexts. For example, Joshi and Luo [6] proposed to uti-

lize GeoNames [4], which is a publicly available geographical infor-

mation system database, to retrieve nearby place entities at a spe-

cific location. Tang et al. [12] proposed to utilize Google Maps [5]

and American Community Survey [1] to extract both geographic

and statistic features for locations within the United States. Liao et

al. [9] proposed to leverage the worldwide scale geotagged images

to generate a tag histogram by counting the associated user tags at

a given location. However, the drawbacks of the existing methods

can be summarized as follows: 1) Due to the availability of supple-

mentary data sources, methods can only be applied within specific

areas of interest; 2) High computational cost and delays caused by

the maintenance of large-scale supplementary data and frequent

nearest neighbor search queries; and 3) Poor versatility as meth-

ods are mostly tailored for a specific location-aware problem.

We therefore present a novel framework to learn semantic em-

beddings for worldwide GPS coordinates. We first adopt the UTM

coordinate system to divide the Earth’s surface into 60 longitude

zones and 20 latitude bands. Next, we encode GPS coordinates

into grid-based features and train a neural network to learn the se-

mantic embeddings separately in each UTM zone. Previous studies

mostly use only one grid to discretize the area of interest for GPS

encoding [2, 14]. However, when dealing withworldwide locations,

this strategy always leads to significant information loss caused

by insufficient number of cells due to system computational cost

limitations (i.e., computer time, memory and disk space). To solve

this problem, we innovatively introduce a two-level grid based ap-

proach to balance between the information loss and computational

cost. Each of the UTM zone on the first level is considered as an

area of interest, which is further discretized by a grid with fine

granularity to perform the initial GPS encoding. While the one

hot encoding is widely used in previous work [2, 12], we present

a new soft GPS encoding method that relaxes the requirement on

the cell size, being able to generate descriptive encoding features

using grids with fewer cells. The GPS coordinates in different UTM

zones may have the same initial encodings, but the extracted se-

mantic embeddings will be different as they will be processed by

https://doi.org/10.1145/3347146.3359067
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different neural networks. Moreover, the use of neural networks

moves the computational intensive processing, e.g., nearest neigh-

bor search queries, to the offline training stage, in order to extract

the GPS embeddings real-time in the testing stage.

2 LEARNING GPS EMBEDDINGS

We propose a general solution that encodes a GPS coordinate into

a semantic descriptor based on a Neural Network, and evaluate its

utilization in geotagged image classification.

2.1 GPS Initial Encoding

It is difficult to directly use the GPS coordinates as the input of

a neural network. Therefore, we transform the low-dimensional

GPS coordinates into high-dimensional distributed vector repre-

sentations before passing them to our proposed neural network

to learn the semantic embeddings. Additionally, to deal with loca-

tions worldwide, we present a novel two-level grid based GPS en-

coding approach. On the first level, we adopt the UTM coordinate

system and divide the Earth into 60 longitude zones and 20 latitude

bands. Each UTM zone is referenced by a longitudinal zone num-

ber (i.e., 1 to 60) and a latitudinal zone letter (i.e., C to X, omitting

O). A location in a zone is represented by the projected easting and

northing planar coordinate pair. Considering the granularity of the

UTM zones might be too coarse, we further divide each zone into

m ×m grid on the second level to perform the initial GPS encod-

ing. Formally, let Z = {дi j |i, j = 1, 2, ...,m} denote the set of cells

in zone Z . Let ci j = (xi j ,yi j ) denote the center UTM coordinate

of cell дi j . Then for any GPS in the same zone Z , we first repre-

sent it by the corresponding UTM coordinate l = (x,y). Next, we

compute its initial encoding El = {eli j |i, j = 1, 2, ...,m} as,

eli j = exp(−





l − ci j






2

σ
) (1)

where




l − ci j




 denotes the Euclidean distance between the UTM

coordinates l and ci j , and σ is a constant attenuation coefficient.

Existing grid-based GPS encoding methods mostly use a single

grid to construct an indicator vector that indicates which grid cell

the GPS coordinate falls into, resulting in a sparse feature vector

with only one entry set to one [2, 12, 14]. The grid granularity is

required to be very fine in order to reduce the information loss as

GPS coordinates that fall into the same cell will be assigned with

the same encoding feature. When it comes to the scale of the en-

tire planet, the use of a single grid may result in great information

loss as the number of cells is always limited by the system’s com-

putational resources. Comparatively, our approach processes each

UTM zone individually by introducing multiple grids in order to

improve the system’s scalability. Moreover, our soft encoding ap-

proach using Eq. 1 can better discriminate GPS coordinates as the

distance




l − ci j




 is more sensitive to the location change in the

corresponding UTM coordinate l .

2.2 Vocabulary-based Semantic Feature

Given the GPS initial encoding features, we aim to learn GPS

semantic embeddings based on neural networks. The labels for

training can be automatically generated by extracting semantic

contexts from supplementary data sources such as Flickr, Twit-

ter, and Foursquare. Formally, let V = {t1, t2, ..., tn} denote a

vocabulary consisting of n words. Our goal is to automatically

generate a vocabulary-based feature for a GPS coordinate based

on vocabulary V . The resulting n-dimensional feature, denoted as

Sl = {sl
i
|i = 1, 2, ...,n}, will be used as labels for the training of

the neural networks.

Let l(o) and T (o) represent the geo tag and semantic words as-

sociated with a multimedia document o, respectively. For example,

T (o) can be the user tags associated with an image, the texts of a

tweet, or the venue type in a check-in record. For each multimedia

document, we compute its semantic encoding S(o) based on vocab-

ularyV as,

si (o) =

{

1 ti ∈ T (o)

0 ti < T (o)
(2)

where si (o) is the i-th element in vector S(o). This semantic

encoding can be quite sensitive to both GPS noise and semantic

keyword uncertainty, and therefore cannot be directly used as the

vocabulary-based semantic feature. For instance, images that are

geographically close to each other can sometimes have completely

different user tags. To reduce noise, we smooth the geographical

distribution of semantic words by taking the geo neighbors into

consideration as well. Given a location l , We first retrieve the k

nearest geo neighbors NN (l) of location l from the geo-tagged

supplementary dataset in terms of the geographical distance. Next,

we compute the weighted sum of the semantic encodings in the

geo neighborhood,

s̃li =
∑

o∈NN (l )

wl
i (o) · si (o) (3)

and apply l1 normalization to obtain our vocabulary-based seman-

tic feature Sl .

sli =
s̃li

∑

j s̃
l
j

(4)

Weight wl
i
(o) is formulated based on the geographical distance

between locations l and l(o) as [9],

wl
i (o) = exp(−

‖l − l(o)‖2
σw

) (5)

where ‖l − l(o)‖2 computes the Euclidean distance between the

UTM coordinates l and l(o), and σw is constant attenuation coeffi-

cient.

The generated feature vector Sl captures the distribution of se-

mantic words around location l , which provides rich contextual in-

formation about events that occur in the real-world. The l1 normal-

ization is applied to reduce the impact caused by the unbalanced

geographical distribution of the geo-tagged documents.

2.3 Neural Network Architecture

For any GPS coordinate on Earth, one may argue that it is possible

to generate the corresponding vocabulary-based feature based on

the unsupervised method introduced in Section 2.2 without train-

ing neural networks. However, the unsupervised method performs

frequent nearest neighbor search from a worldwide large scale

dataset, leading to high computational cost and processing delays.
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Figure 1: Illustration of the proposed neural network for

GPS semantic encoding.

To solve the issues, we propose to train a neural network for each

UTM zone, which is able to transform the GPS initial encoding

to the vocabulary-based semantic feature. The advantages of our

proposed approach are twofold: 1) the large scale supplementary

dataset is only required during training, and 2) the models, once

trained, generate the semantic embeddings in real-time.

As illustrated in Figure 1, we adopt a neural network that con-

sists of three hidden layers followed by ReLU (rectified linear unit)

activation, and one output layer with softmax function. The size

of the three hidden layers are 512, 1024 and 2048, respectively. We

leverage the one million Flickr images collected by Li et al. [8] to

generate the vocabulary V . Following previous work [9, 13], we

construct the V by selecting the top 2000 most frequent tags in

the one million Flickr dataset with stop words, camera brands, and

non English words excluded beforehand. So both the vocabulary-

based semantic feature and the output of our neural network have

a dimensionality of 2000.

The input to our neural networks is the GPS initial encoding El

as introduced in Section 2.1. During learning, we aim to use the

vocabulary-based semantic features Sl as labels to train our neural

networks f (El ) to estimate the normalized word frequency in the

vicinity of location l . Let θ be the model parameters to be learned,

the loss function for the network training is given as,

L(θ) =
∑

l

DKL (S
l | | f (El ; θ)) (6)

where DKL (P | |Q) =
∑

i Pi log
Pi
Qi

represents the Kullback Leibler

(KL) divergence. As the semantic feature Sl can be interpreted as

a distribution of the semantic words in vocabulary V , the KL di-

vergence, which measures how one probability distribution is dif-

ferent from a second, reference probability distribution, can be a

good choice for the loss function. During training, we optimize

argminθ L(θ) using stochastic mini-batch gradient descent based

on back-propagationwithmomentum. Themini-batch size and the

momentum were set to 32 and 0.9, respectively. The learning rate

was set to 0.001.

3 EXPERIMENTS

We evaluate the effectiveness of our proposed GPS semantic em-

beddings learning method in geo-tagged image classification. The

attenuation coefficient σ is empirically set to 20 km throughout

Table 1: mAP comparison on image classification using GPS

embeddings generated based on grids with different sizes.

Grid Size 10 × 10 20 × 20 30 × 30

GPS2Vec 0.1754 0.1824 0.1853

GPS2Vec+V 0.2971 0.2999 0.2987

Table 2: mAP comparison with the state-of-the-art location-

aware image classification approaches.

Method Classifier mAP

Visual visual 0.234

OneHot [2] geo 0.066

GPS2Veconehot geo 0.130

GPS2Vec geo 0.182

OneHot [2] + V fusion 0.238

GPS2Veconehot + V fusion 0.277

GPS2Vec + V fusion 0.300

Kleban et al. [7] fusion 0.080

Qian et al. [10] fusion 0.113

Li et al. [8] fusion 0.251

Wang et al. [13] fusion 0.236

Liao et al. [9] fusion 0.347

the experiments. The number of geo neighbors k is set to 150 as

suggested by Liao et al. [9].

3.1 Experimental Setup

We evaluate our method using the NUS-WIDE dataset [3]. As the

location context is required in our experiments, we use the geo-

tagged images in NUS-WIDE and form a training set with 41,173

images and a test set with 27,401 images. In terms of the visual fea-

ture, we adopt the BovW representation based on SIFT descriptors

that is used in previous work [9] to make it a fair comparison. We

adopt a neural network with one hidden layer of 512 units as the

classifier. The learning rate and mini-batch size were set to 0.001

and 32, respectively. We report the mean Average Precision (mAP)

as the evaluation criteria.

3.2 Performance Comparison

The image classification results obtained based on different grid

sizes for the GPS initial encoding are reported in Table 1. The

GPS2Vec+B method concatenated the GPS semantic embeddings

and the image visual features to train a classifier. As can be seen,

the GPS2Vec method obtained the best mean average precision

with m = 30, which outperformedm = 10 and m = 20 by 5.6%,

1.6%, respectively. The GPS2Vec+B method, on the other hand,

obtained competitive classification results with m = 10, 20, and

30. Generally speaking, the GPS semantic embeddings tend to

be more descriptive with a larger grid size. Fortunately, the GPS

embeddings and the visual features are complementary to each

other so that the influence of the grid size has been significantly

reduced with our feature fusion approach.We considerm = 20 can

be a good trade-off, and use this setting in the next experiment.
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Next, we compare our proposed method to the state-of-the-art

geo-based and fusion-based image classification systems in Table 2

with the best and second best results highlighted. Our GPS2Vec ob-

tained the best mAP among the geo-based methods. Moreover, the

GPS2Vec+V outperformed the OneHot+V and GPS2Veconehot+V

by 26.0% and 8.3%, respectively. The results verify the effective-

ness of our proposed GPS2Vec embeddings and its complemen-

tarity to image visual features. When comparing to other fusion

methods, our method achieved significant improvements over the

approaches that utilized the GPS coordinates in a traditional way

for geo neighbor search [7, 8, 10]. Wang et al. [13] and Liao et

al. [9] both proposed to fuse a visual classifier with a textual clas-

sifier built upon tag features generated by conjunctively consider-

ing geo and visual neighbors from a supplementary image dataset.

The method proposed by Liao et al. [9] was able to achieve the

best classification result due to the following reasons. First, this

method searches for visual neighbors of test images, which is tai-

lored for image classification and cannot be applied to other geo-

aware applications. Second, the authors leveraged a much larger

supplementary dataset that consists of 10 million geo-tagged im-

ages to generate a more descriptive tag-based feature. Compara-

tively, our method is more general, and at the same time, is able

to obtain the second best mean average precision of 0.3 in image

classification. Moreover, our method moves the time-consuming

nearest neighbor queries to the offline training stage, in order to

achieve the real-time response in the testing stage of extracting

semantic embeddings from GPS coordinates.

4 RELATED WORK

With the ubiquity of sensor-equipped cellphones, it is common for

multimedia documents posted online to be associated with geo-

tags [15]. The direct utilization of GPS coordinates makes it diffi-

cult to be integrated with existing high dimensional visual features.

In recent years, several efforts have been made to encode GPS co-

ordinates at the feature level [9, 12]. Tang et al. [12] proposed to

grid the area of interest (AOI) into 25× 25 km square cells and con-

struct an indicator vector that indicates which grid cell the GPS

coordinate falls into. Yao et al. [14] further proposed to transform

the sparse indicator vector into a dense embedding vector by intro-

ducing an embedding layer in their system architecture. However,

the number of cells to encode GPS coordinates is always limited

by the computational time and memory. In an extreme example,

the geotagged documents are spread all over the world [2]. The

authors adopted the UTM Zone for GPS encoding, resulting in sig-

nificant information loss as the granularity of UTM is too coarse.

With supplementary data sources, it is possible to encode GPS

coordinates into feature vectors with semantics. For example,

given a GPS coordinate, Tang et al. [12] extracted geographic map

features and ACS features using Google Maps [5] and American

Community Survey (ACS) [1], respectively. Joshi and Luo [6]

proposed to encode GPS coordinates by retrieving nearby place

entities from GeoNames [4], which is a freely available geo-

graphical information system (GIS) database. Recently, Vincent

Spruyt [11] presented a triplet network to learn a metric space

that captures semantic similarity between different geographical

location coordinates. Given a location coordinate and a radius,

they queried their GIS database to obtain a large amount of

geographical information, and rasterized it into image tiles for

the triplet network training. However, one major drawback of

these approaches lies in its difficulties of being generalized to

worldwide applications.

5 CONCLUSION

We have presented a novel framework, GPS2Vec, to learn GPS se-

mantic embeddings in support of location-aware applications. The

generated semantic embeddings can be easily integrated with ex-

isting high dimensional descriptors, e.g., image visual features, by

early fusion, based on which a new classifier can be trained to ob-

tain more robust predictions. To divide the Earth’s surface into

smaller areas of manageable scale, we adopt the UTM coordinate

system and train a neural network for each UTM zone to generate

location semantic embeddings. Our generated GPS semantic em-

beddings are complementary to the textual and visual features in

existing systems. The geotagged image classification demonstrates

the effective use of our proposed GPS semantic embeddings in ma-

chine learning based systems.
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