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ABSTRACT

Similar to positioning data, camera orientation information
has become a powerful contextual feature utilized by a num-
ber of GIS and social media applications. Such auxiliary in-
formation facilitates higher-level semantic analysis and man-
agement of video assets in such applications, e.g., video sum-
marization and video indexing systems. However, it is prob-
lematic that raw sensor data collected from current mobile
devices is often not accurate enough for subsequent geospa-
tial analysis. To date, an effective orientation data correc-
tion system for mobile video content has been lacking. Here
we present a content-based approach that improves the ac-
curacy of noisy orientation sensor measurements generated
by mobile devices in conjunction with video acquisition. Our
preliminary experimental results demonstrate significant ac-
curacy enhancements which benefit upstream sensor-aided
GIS applications to access video content more precisely.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and
GIS; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis - Sensor Fusion

Keywords

Orientation sensors, georeferenced mobile video, data cor-
rection, digital compass

1. INTRODUCTION
The multimedia content generated from smartphones and

tablets has become one of the primary contributors to the
media-rich web and its underlying databases. The top three
most popular cameras in the Flickr community are smart-
phone models1. Meanwhile, from the significant number of
sensors integrated into these devices, an increasing amount
of geospatial sensor information in conjunction with still im-
ages and video frames is available for both research and com-

1http://www.flickr.com/cameras
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Figure 1: Example of a comparison of inaccurate, raw cam-
era orientation data (red) with the ground truth (green).

mercial utilization. As an example, the convenient acquisi-
tion of time-series data from digital compasses integrated
in mobile devices has enabled camera orientation data, in
addition to traditional position measurements, to become
important contextual information.

Recently an increasing number of GIS and social media
applications utilize diverse auxiliary sensor information as
complementary features to improve multimedia content anal-
ysis performance. Such surrounding meta-data provides con-
textual descriptions at a semantically interesting level and
enables ingenious and efficient management of mobile videos
[10]. The scenes captured in images or videos can be char-
acterized by a sequence of camera position and orientation
data. These geographically described (i.e., georeferenced)
media data contain significant information about the region
where they were captured and can be effectively processed
in various GIS applications, e.g., for visual navigation and
geospace queries. Both camera position and orientation sen-
sor data are also employed by various GIS and social me-
dia applications such as street navigation systems [5], photo
organization and management [3], video indexing and tag-
ging [6, 13], video summarizations [17, 4], video encoding
complexity reductions [2, 15], and others.

However, unfortunately most geospatial sensor informa-
tion (including positioning and orientation data) collected
from current phones or tablets is not highly accurate due to
varying surrounding environmental conditions during data
acquisition, and the use of consumer-grade sensors. For GPS
this issue is well-known in the research community, and thus
a number of approaches have been proposed for data correc-
tion. In contrast, the accuracy of orientation data acquired
from digital compasses, which is also increasingly used in
many applications, has not been studied extensively. We
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found that orientation data is also in need of correction prior
to upstream application use. As exemplified in Figure 1, the
red pie-shaped slice represents the raw, uncorrected orien-
tation measurement while the green slice indicates the cor-
rected data. Here we use the pie-shaped slice to present one
orientation value instead of one single vector since the pie-
shaped slice indicates the field-of-view (FOV) of one video
frame. We detail this part in Section 2. As illustrated, the
user is recording the tall Marina Bay Sands hotel structure
towards the southeast direction, while the direct, raw sensor
measurement from the mobile device indicates an east direc-
tion and hence may later lead to a completely incorrect scene
expectation of a bridge (the Helix Bridge). We found in our
real world measurements that in some cases the discrepancy
is more than 90 degrees from the ground-truth value. More-
over, we believe that the research studies and applications
employing geospatial analysis of sensor data outlined ear-
lier are mostly not error resilient with respect to incorrect
sensor data input. Consequently, one important and urgent
requirement to facilitate upstream research activities and
applications is the availability of well-corrected orientation
data.

To aid in this effort we introduce a framework which cor-
rects orientation data measured in conjunction with mobile
videos based on image processing techniques. Our system
assumes the roughly true orientation value of the first frame
in a georeferenced video can be estimated and provided by
users manually. We subsequently propagate the manually
estimated orientation value from one specific frame to the
rest of the video. By leveraging the content consistency
in the temporal domain, we compute the horizontal mo-
tion flows to interpolate accurate orientation data for every
frame.

2. SENSOR DATA MODEL
The target sensor data of our correction approach is a

series of contextual camera orientation descriptions of mo-
bile video content based on the geospatial properties of the
scenes it captures. Here we provide a brief summary of back-
ground information on our georeferenced video annotation
model that collects and manages sensor data in conjunction
with video contents during the recoding phase.

To let users conveniently and efficiently acquire sensor-
annotated videos, we have made two custom recording apps
publicly available for the Android and iOS platforms, namely
the GeoVid apps [16]. When a user begins to capture a
video, the GPS and compass sensors are turned on to con-
tinuously record location and orientation information of the
(moving) camera. All collected sensor data (i.e., camera
location and orientation, the corresponding frame timecode
and video ID) are combined into a JSON format and up-
loaded to a portal, to which users can also submit vari-
ous spatial and contextual queries, browse, and retrieve the
videos with their sensor data via web APIs2.

We adapt the field-of-view (FOV, also called the view-
able scene) model introduced by Arslan Ay et al. [1]. An
FOV describes a scene area captured by a camera posi-
tioned at a given location. The description of a camera’s
viewable scene consists of three parameters: the camera lo-
cation L, the camera orientation θ, and the viewable angle
α (FOV ≡ 〈L, θ, α〉). The camera position L is composed of

2http://api.geovid.org

latitude and longitude coordinates provided by a positioning
device (e.g., GPS receiver) and the camera orientation θ is
obtained based on the direction angle value from a digital
compass. The viewable angle α is calculated based on the
camera and lens properties at the current zoom level. Note,
each mobile device model may use different sampling fre-
quencies for different sensors. Ideally we acquire one FOV
triplet per frame. If that is not feasible and the granularity
is coarser due to the device limits, we perform linear inter-
polation to generate triplets for every frame.

3. ORIENTATION DATA CORRECTION
To correct the noise, we propagate the manually estimated

orientation value from one specific frame to the whole video
based on optical flow estimation. We begin by describing
the problem formally.

3.1 Problem Formulation
In our context, orientation data of a mobile video is a

time-series dataset consisting of compass reading values. Let
Θ = {θ1, θ2, · · · , θn} and F = {f1, f2, · · · , fn} be the se-
quences of compass readings and their corresponding video
frames for every time instance T = {t1, t2, · · · , tn}, respec-
tively. The value θi is measured by how many degrees
a northward unit vector needs to rotate to current vector
clockwise in 2D geospace. For example, if the camera is
facing due east, then θi = 90. The tilting operation of the
camera is not covered in this study. We plan to further elab-
orate on 6 degrees of freedom (DOF) camera pose correction
techniques in 3D geospace as part of our future work. We
denote the ground truth of the orientation sequence data
as G = {g1, g2, · · · , gn}. Both gi and θi have values in the
range 0 to 360 degrees. The direction measurement error for
θi is the angle difference between its true and measured ori-
entation δi = min(‖gi − θi‖, 360 − ‖gi − θi‖). The direction
error of Θ is the average of every sample’s direction error,
i.e., EΘ = 1

n

∑n
i=1 δi. The words orientation and direction

are used interchangeably in our study.

Problem Statement. Given a sequence of orientation
readings Θ and their related timestamps and frames T and
F , find a sequence of estimated directional values, F : θi →
τi, such that the accuracy of processed orientation sequence
Θ′ = {τ1, τ2, ..., τn} is enhanced by having EΘ � EΘ′ , where
EΘ′ = 1

n

∑n
i=1 δ′

i and δ′
i is each processed orientation’s dis-

tance to the ground truth.

3.2 Landmark Tracking
Since the estimated directional value of a video’s first

frame is provided manually, θ1 → τ1 at time T = {t1},
our system subsequently tracks the interesting feature points
detected around the target landmark to continuously calcu-
late the position of this building in the next several seconds
of frames. The position of the target landmark in the im-
age is also marked by users manually. Afterward we use an
affine model to estimate the target landmark’s 2D transfor-
mation in the image and extract motion vector information
on the horizontal axis, termed xi · · · xj , to compute cam-
era orientation values τi · · · τj for the following portion of
frames fi · · · fj . Since the time duration of each visual fea-
ture tracking is relatively short (we perform one tracking
process between every two GPS signal updates), it is rea-
sonable to assume that the camera location does not move
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too much and the camera is approximately performing a
panning operation during that short period. Thus, we can
estimate the orientation values by the equation below,

τi =
−xi

Rh
α + τi−t (1)

where Rh is the resolution value on either the x− or the
y−axis, depending on the recoding pose which could be Por-
trait or Landscape mode, and α is the viewable angle we
introduced in Section 2. We calculate the relative camera
rotation first and add it to the previous estimated directional
value to obtain the current frame’s camera orientation. In
the convention of motion vector notation, if the reference
object moves towards the right in the image, the motion
vector should be positive. Similarly, in the orientation no-
tation, this case indicates that the camera is panning left
(rotating counter-clockwise from an aerial view), which gen-
erates a negative value accordingly. That is the reason we
change the sign (-1) of the horizontal motion vector. Due to
performance concerns, we do not compute the motion vector
between every two consecutive frames. Instead, we perform
such tracking computation every t frames.

We use the Kanade-Lucas-Tomasi Feature Tracker [14] to
infer motion vector xi between fi and fi−t. Our system
chooses and locates features by examining the minimum
eigenvalue of each 2 × 2 gradient matrix, and features are
tracked using a Newton-Raphson method of minimizing the
difference between the two windows. An affine transforma-
tion is fitted between the image of the currently tracked fea-
ture fi and its image from a non-consecutive previous frame
fi−t. If the affine compensated image is too dissimilar, the
previously extracted features are dropped and new qualified
features are selected based on the same algorithm for sub-
stitution. Therefore in each motion vector calculation, we
maintain a consistent number of tracking feature points FN
through abandonment and replacement operations. Our im-
plementation uses values of t = 15 and FN = 150 by con-
sidering both image size and performance.

By aggregating xi at the landmark’s position indicated
by the users in the beginning, we are able to know whether
the landmark still appeares within the image (i.e., within
the FOV geographically). When we detect that the target
landmark is moving out of the viewable scene, our system
changes to track the feature points detected from the whole
frame and to extract motion vectors based on these extended
features. Lastly, all camera orientation values between τi

and τi−t are estimated by linear interpolation. Our system
continues such operations until the end of the video sensor
file.

4. EXPERIMENTAL EVALUATION
In our experiments, we utilize the publicly available real-

world georeferenced video dataset from the GeoVid web-
site3, process the corresponding sensor data of the videos
with our proposed method and compare the results with the
ground truth in terms of the accuracy enhancement. Since
the manual ground truth annotation of the orientation value
is extremely time consuming, in this paper we apply our ap-
proach on only one georeferenced video with erroneous di-
rectional sensor data, which consists of 131 raw orientation

3http://api.geovid.org/v1.0/web/viewer
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Figure 2: (a) Raw, processed and ground truth camera ori-
entation reading results of one sensor data file (θi, τi, and
gi). (b) Raw and processed camera orientation error of each
sample in one sensor data file (δi and δ′

i).

values and 870 frames in total. We plan to conduct more
experiments on other mobile videos in the future.

To obtain the ground truth data we provide two alterna-
tive ways for users to manually annotate true camera ori-
entation values. For a given video frame, we first provide
multiple Google Street View images and a Google Earth 3D
synthesized view from the current GPS location. Users can
compare the visual contents between the frame and the refer-
enced views to determine the orientation value. In addition,
we also allow users to indicate the geographic object that
appears in the frame center on the Google Earth interface.
The coordinates of the indicated object as well as the camera
location are later entered into the Geotools library4 to cal-
culate the true camera orientation. For each experimental
video, we sample frames every 3 seconds for users to perform
the ground truth annotation. We interpolate the orientation
degrees between sampled frames for later comparisons.

The first video frame of each video clip is treated as a
still image and ask users to manually estimate a likely direc-
tion for this image via the above method. To the following
frames, we apply our landmark tracking approach. As will
be shown in our experimental results, the system works well
for georeferenced mobile videos. We employ the FFmpeg

4http://geotools-php.org
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library5 to extract frames from the video dataset at a cho-
sen resolution of 360 × 240 per frame to reduce the time
consumption for image processing.

In Figure 2, we present the results of one camera orien-
tation sequence, which consists of 131 camera orientation
values. Figure 2a illustrates θi, τi, and gi of the tested mo-
bile video and Figure 2b illustrates the errors δi and δ′

i ac-
cordingly. As shown, the raw orientation readings along the
whole file are very much incorrect, which is causing a drift
phenomenon when displayed on a map interface. After the
correction with our algorithm, we find a distinct improve-
ment such that the processed orientation data approaches
the ground truth values and the error of each sample is con-
siderably reduced.

5. RELATED WORK
Researchers have leveraged various content-based com-

puter vision techniques to estimate the viewing direction
of photos. E.g., they geo-locate a photo and then estimate
the camera orientation by registering the image onto street
level panoramas [7], or Google Street View and Google Earth
Map [11]. Luo et al. utilize a SIFT Flow to match a photo
in a database followed by image geometry calculation, to
determine and filter the viewing direction [9]. However,
these methods can be applied only to individual photos.
They all require either a constrained camera location (pho-
tos taken on or near a road network) or a relatively large
image database to perform the matching phase.

Recently, the Structure from Motion (SfM) technique has
been extensively exploited to reconstruct 3D models from
a collection of images [12, 8]. The images are later regis-
tered to 3D scenes by feature point matching and the cam-
era pose (including location and orientation) of each image
is estimated by image geometry calculation. Since these
algorithms were not devised for a dedicated sensor data cor-
rection purpose, they ignore all contextual geo-information.
As a result, the preliminary dataset requirements and pro-
cessing time make these methods unsuitable for large-scale
camera orientation correction. In our framework, we only
process the frames in one single video without requiring any
third party image database.

6. CONCLUSIONS
We presented an approach for camera orientation data

correction based on the image processing techniques. We
applied this method to estimate more precise orientation
data for georeferenced videos. The preliminary experimen-
tal results demonstrate that our technique is reasonably ef-
fective compared with the ground truth. One limitation of
our work is that the initial estimated orientation value of the
first frame has to be provided manually, for our system to
propagate the corrected values across all the video frames.
As part of our future work we plan to investigate other vi-
sual features and sensors embedded in mobile platforms to
help with camera orientation correction without extra user
input.
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