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ABSTRACT
Map matching has long been a fundamental yet challenging prob-
lem. However, there are currently only a few public small-scale
map matching benchmark datasets. Both the GPS trajectories and
the road network in the existing map matching datasets are repre-
sented by location only, which cannot support the development of
data-driven and semantic-enriched map matching algorithms that
have increasingly emerged in recent years. To bridge the gap, we
present the first large-scale attribute-rich mapmatching benchmark
dataset covering two cities in Southeast Asia (i.e., Singapore and
Jakarta). Our GPS trajectories contain rich contextual information
including the accuracy level, bearing, speed, and transport mode
in addition to the latitude and longitude geo-coordinates. The un-
derlying road network is a snapshot of the OpenStreetMap where
roads are associated with rich attributes such as road type, speed
limit, etc. To ensure the quality of our dataset, the annotation of the
map-matched routes has been conducted by a team of professional
map operators. Analysis on our dataset provides new insights into
the challenges and opportunities in map matching algorithms.
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1 INTRODUCTION
Map matching algorithms aim to determine the correct route where
a vehicle has traveled on given the noisy GPS traces. Though the
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correction of the raw positioning data has been important for a
variety of downstream applications, there is currently no public
large-scale benchmark dataset for map-matching evaluation [9].
The few existing map matching datasets [7, 8] have limitations such
as 1) the number of GPS trajectories is small (i.e., less than 100), and
2) both the GPS traces and the map data are represented by location
only. These drawbacks make the existing map matching datasets
infeasible for the evaluation of recently proposed data-driven or
semantic-enhanced map matching algorithms where large-scale
historical GPS trajectories with rich attributes are required [4, 12].
Therefore, researchers mostly have to evaluate their contributions
based on private, simulated, or augmented datasets, which makes
the comparison between different methods highly difficult.

To solve the above issues, we present Grab-Posisi-L1, the first
large-scale real-world GPS trajectory dataset with digital map and
manually labelled map-matched routes in two cities (i.e., Singapore
and Jakarta) in Southeast Asia. The GPS dataset contains both
motorcar and motorcycle drivers’ trajectories with rich sensor data
including latitude, longitude, accuracy level, bearing, speed, and
timestamp. All GPS trajectories are sampled from in-transit drivers
of Grab, which is the leading ride-sharing company in Southeast
Asia [6]. The digital mapwe provide is a snapshot of OpenStreetMap
(OSM) [5] in April 2020. In addition to the road network topology,
OSM roads are also associated with semantic attributes such as road
type, speed limit, number of lanes, etc., which provide contextual
information that can be used to enhance the map matching results.

The map-matched routes are manually labelled by a team of
professional map operators, who have been trained to label road
segments specifically for map-matching purpose. To facilitate the
annotation, we generate initial results based on the HMM map
matching algorithm. We visualize and present the initial results to
the annotators on a map interface in JOSM [2]. The annotators can
then check whether the the trajectory perfectly follows the routes
or not, and make necessary corrections if there are any incorrect
match or missing road segments. Since we have not recorded the
actual routes the drivers travelled on, we cannot guarantee absolute
correctness of the manual annotations. To ensure the quality of
our dataset, we randomly select 10% of the manual annotations to
go through a second-round human validation. The results show
that around 97% of the sample data has a difference of less than
five segments from the original annotation, where the fraction

1The dataset is available upon request sent to grab-posisi.geo@grab.com
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of disagreement is quite small as the average segment count of a
trajectory is around 281 in our dataset.

2 DATASET COLLECTION
2.1 GPS Trajectories
In this dataset, we collected labelled data for motorcar and motor-
cycle drivers’ trajectories in Singapore (SIN) and Jakarta (JKT). The
GPS trajectories of SIN motorcar, JKT motorcar and JKT motor-
cycle are sampled from Grab-Posisi dataset [6], maintaining the
equivalent spatial coverage as the original dataset. To bring more
data diversity, we collected Grab motorcycle drivers’ trajectories in
Singapore as well. The new traces were collected in April, 2020 from
drivers’ devices. Same as Grab-Posisi dataset, the GPS sampling
rate of these trajectories is as high as 1 second except some GPS
breakage cases. The rich attributes of the GPS points, i.e., speed,
bearing and accuracy, are also provided in the same format as in
Grab-Posisi dataset (Table 1).

Table 1: Attributes of GPS Pings

Attribute Data Type Remark/Format
Trajectory ID string identifier for the trajectory

Latitude float WGS84
Longitude float WGS84
Timestamp bigint UTC

Accuracy Level float circle radius, in meter
Bearing float degrees relative to true north
Speed float in meters/second

2.2 OSM Map Representation
OpenStreetMap (OSM) [3] represents map topology with nodes and
ways. Each node, uniquely identified by a node ID, is associated
with its latitude and longitude. For instance, node 17905827082
refers to a point on Central Expressway (CTE) in Singapore. A way
consists of a sequence of nodes depicting the curvature of it, thus it
is not necessarily an edge between two intersection nodes. A way
is also enriched with various attributes, such as road class (highway
or residential), lanes, speed limit, etc.

Conventionally, we refer segments [3] to be the connection be-
tween two consecutive nodes in a way. Segments inherit the under-
lying way attributes. Each segment can be identified by an OSM
node pair, e.g., (1790582708, 5982519924), the order of which indi-
cates the direction of the road it belongs to. We say 1790582708
is the start node and 5982519924 is the end node of the segment,
respectively. We say a segment 𝑆𝑖 is directly connected to a segment
𝑆 𝑗 if the shortest path from 𝑆𝑖 to 𝑆 𝑗 consists of only 𝑆𝑖 , 𝑆 𝑗 them-
selves. We also say there is a gap between 𝑆𝑖 and 𝑆 𝑗 if 𝑆𝑖 is not
directly connected to 𝑆 𝑗 . The notion of gap is to cover the corner
case where 𝑆𝑖 ’s end node is 𝑆 𝑗 ’s start node but a turn restriction
prohibits 𝑆𝑖 to be connected to 𝑆 𝑗 directly. Consequently, either
there is no path between 𝑆𝑖 and 𝑆 𝑗 because of the turn restriction,
or a path exists between 𝑆𝑖 and 𝑆 𝑗 by making a u-turn at the end
node of 𝑆𝑖 and reaching 𝑆 𝑗 through other segments. In either case,

2https://www.openstreetmap.org/node/1790582708

𝑆𝑖 is not directly connected to 𝑆 𝑗 . The notion of direct connection
and gap will be used later in Section 2.3.3 for data post-processing.

Segments serve as the basic units in our annotation. The rea-
sons why we chose segments over ways are threefold. Firstly, OSM
segments are universal. Any map matching algorithm developed
based on OSM data can utilise our dataset for performance evalua-
tion. Secondly, with OSM segments, the underlying way and way
attributes can be retrieved from OSM for better development of
attribute-enriched map matching algorithms. Last but not least,
OSM segments can more easily adapt to map version upgrade be-
cause OSM is collaboratively edited daily.

To facilitate the usage of this dataset, we also provide the map
data which was used for our annotation. The map data we use is a
snapshot of the OSM maps of Singapore and Jakarta in April 2020
in standard PBF format, where the nodes and ways are encoded
into protocol buffers.

2.3 Route Annotation Design
2.3.1 Annotation Challenges. Although this task appears to be
simple and well-defined, there are some subtleties within. The first
problem is whether we annotate each GPS point with a segment or
annotate a trajectory with a sequence of segments. Ideally, each GPS
point in a trajectory corresponds to exactly one segment. When
doing the annotation practically, however, the segment which a
point belongs to is not always obvious. For instance, there may
exist multiple reasonable segments matching a GPS point falling in
an intersection (Figure 1a). Moreover, the right label of a jumping-
back GPS point (Figure 1b) is also arguable. We could match it to
the segment matching its previous point, or mark it as a match
failure. Due to these ambiguities, we decided to annotate the whole
trajectory, without explicit point-to-segment correspondence.

(a) Two points falling in an
intersection where it is both
fair to label them to the pink
road and the yellow road.

(b) Jumping-back points near
a Y-split in a trajectory mov-
ing from left to right.

(c) Trajectory moving from right to left, con-
flictingwith the one-way road it seems to be on.

Figure 1: Annotation challenges
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The second challenge is maintaining the map data consistency
throughout the annotation process (3 months in our case). As OSM
is collaboratively updated daily, it can be anticipated that some
nodes become invalid (e.g., because of deletion) and some new
nodes are added in the midst of our annotation. Due to the limita-
tion of the visualisation tool we use (JOSM [2]), it is infeasible to
load and visualise the entire map when the map size is too large.
Therefore, we break it down into two stages, annotating on OSM
real-time maps and post-processing to keep all the segments con-
sistent with one single map version. We explain the procedure of
post-processing in Section 2.3.3.

Another practical issue is that some trajectories conflict with the
road restrictions or rules defined by the map. Typical cases include
driver moving in the opposite direction to a road which is tagged
one-way (Figure 1c), driver making a u-turn at an intersection
which doesn’t allow that, etc. It is beyond this paper’s scope to
fix driver behaviors or map imperfections. For those cases, our
annotaters filter out trajectories that have a large portion of points
having those issues.

2.3.2 Annotation Workflow. It is tedious to annotate from scratch.
So we first map match all the GPS trajectories using the HMM
algorithm [8], de-duplicate segments in each trajectory, and save
segment node IDs of each trajectory in a CSV file for annotators
to make fixes. Annotators would then visualise the trajectory and
segments in JOSM[2] and check whether the segments perfectly
follow the trajectory. Figure 2 shows a visualisation example. They
can refer to the latest map downloaded from OSM and edit the
segment node IDs in the CSV file if any segment is incorrect or
missing.

The annotation was undertaken by a team of professional map
operators, who have worked on OSM for years and are trained to
label segments for map-matching’s purpose.

2.3.3 Data Cleaning and Post-processing. For data cleaning, we
select a map version and remove all the segments that are invalid
in this map. Recall that segments might become invalid due to OSM
deletion or the inaccessibility as indicated by their tags in OSM.

It is worth noting that the annotation workflow might result in
gaps in a segment sequence where two consecutive segments are
not directly connected. We post-process the sequence to fill the
gaps with reasonable assumptions. The process we develop is based
on heuristics from our empirical experience, as follows:

Figure 2: Visualization of a GPS trajectory (blue) and the
segments (red) generated by a map-matching algorithm in
JOSM. Numbers indicate the indices of the segments.

(1) Leave gaps larger than 1KM (haversine distance) untouched
because they are more likely to be caused by missing GPS
signal.

(2) Fill in a gap within 1KM between two consecutive segments.
Given a segment sequence from annotations, we scan it
in sequential order to identify a gap between consecutive
segments 𝑆𝑖 and 𝑆𝑖+1.
• We find the shortest route between 𝑆𝑖 and 𝑆𝑖+1 using Di-
jkstra’s algorithm. If the routing distance is less than 2.5
times of the haversine distance, we insert the shortest
route in between.

• Otherwise, we expand the route search to be between
the segment before 𝑆𝑖 i.e., 𝑆𝑖−1 and the segment after 𝑆𝑖+1
i.e., 𝑆𝑖+2. The route search terminates after maximum 4
expansions.

• Note that while segment 𝑆𝑖−1 is directly connected to 𝑆𝑖 ,
there is no guarantee that 𝑆𝑖+1 is directly connected to
𝑆𝑖+2. We terminate early when a gap between 𝑆𝑖+1 and
𝑆𝑖+2 is found.

(3) Repeat the process for the resulting segment sequence until
no more gaps can be filled automatically.

(4) Annotators will have a second review on the remaining gaps.
We observe that most of such cases are caused by map issues,
such as missing roads, the inaccessibility of segments in
between, or road restrictions.

Note that this procedure can be easily extended to any future
OSM map version to keep the dataset up-to-date.

2.3.4 Quality Control. We control the annotation quality by check-
ing randomly sampled 10% of the annotations. 97% of the sample
data has a difference of less than 5 segments from the original
annotation.

2.3.5 Annotation Format. The segments we provide are OSM node
ID pairs in CSV format. Each trajectory corresponds to one CSV file
named as the trajectory ID containing a sequence of segments (Fig-
ure 3). Segment ID indicates the index of each segment. Start node
ID and end node ID indicate the OSM node IDs of each segment.

Segment ID,Start Node ID,End Node ID
0,4693679859,4693679841
1,4693679841,4693679842
2,4693679842,4693679846
...

Figure 3: Sample Annotations

3 DATASET ANALYSIS
We provide map-matched route annotation for 2,937 GPS trajec-
tories covering 2 cities in Southeast Asia (Singapore and Jakarta)
in 2 transport modes, i.e., motorcar and motorcycle. Table 2 shows
the summary statistics of the dataset. There are a total number of
2,055,252 GPS points in all trajectories and 827,241 OSM segment
labels. Note that for JKT trajectories, total segments are more than
total pings. This is because the road curvature in Jakarta, especially
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Table 2: Statistics Summary

Category Trajectories Total Points Total Segments
SIN Motorcar 1,774 1,921,127 583,130
SIN Motorcycle 300 59,233 46,530
JKT Motorcar 446 40,273 99,720
JKT Motorcycle 417 34,619 97,861

Overall 2,937 2,055,252 827,241

Figure 4: The histogram of trajectory length in terms of GPS
point count and segment count.

Figure 5: The distribution of sampling period in each cate-
gory (log scale).

suburban area, is high and hence more segments are needed to cap-
ture the shape of the roads. Figure 4 further shows the distribution
of trajectory length in each category in terms of GPS point count
and segment count. Overall, the average segment count of a trajec-
tory is around 281. Due to the annotation challenges mentioned
before, there are a small number of gaps in the route annotation. In
all four categories, there are below 0.2% of the gaps.

Figure 5 shows the distribution of sampling period in each cate-
gory. For SINMotorcar and SINMotorcycle, above 90% of the points
have a sampling period lower than 5 seconds. For JKT data, 80% of
the points have a sampling period lower than 20 seconds.

4 RELATEDWORK
There are a number of large-scale GPS trajectory datasets that
are publicly available such as the Microsoft GeoLife [11] and the

Grab-Posisi dataset [6]. However, without the corresponding map
data and the ground-truth of the map matched routes, such GPS
trajectory datasets are difficult to be used for the evaluation of map
matching algorithms. To the best of our knowledge, there are only
two widely used benchmark datasets for map-matching evaluation.
Newson and Krumm provided a complete dataset with tracks, map,
and map-matched routes of a 3-hour drive in Seattle, WA, USA [8].
Kubička et al. selected 100 GPS trajectories all over the world from
a publicly available collection called Planet GPX [1] and manually
labeled the map-matched routes by human annotators [7]. However,
both datasets have drawbacks that cannot support the development
of advanced map matching algorithms proposed in recent years.
First, the datasets are too small-scale to be used for data-driven map
matching approaches [12]. Second, the GPS trajectories and the
road network in the benchmark datasets only contain the location
information given by latitude and longitude, which hinders the
development of semantic-enriched map matching algorithms [4,
10]. Therefore, it is critical to have a large-scale and attribute-rich
benchmark dataset to accelerate the evolution of advanced map
matching algorithms.

5 CONCLUSIONS
We present a large-scale real-world GPS trajectory dataset with a
digital map andmanually labelledmap-matched routes in support of
the development of map matching algorithms. Our dataset consists
of 2,937 GPS trajectories, which is the largest among the public map
matching benchmark datasets. Moreover, our dataset is attribute-
rich where the GPS traces are associated with vehicle’s sensor data
such as bearing and speed and the road segments are associated
with attributes such as road type and speed limit. The dataset is of
significant importance for developing and benchmarking advanced
map matching algorithms that are based on, e.g., machine learning
and semantic analysis.
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