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ABSTRACT

The successful deep convolutional neural networks for visual

object recognition typically rely on a massive number of train-

ing images that are well annotated by class labels or object

bounding boxes with great human efforts. Here we explore

the use of the geographic metadata, which are automatically

retrieved from sensors such as GPS and compass, in weakly-

supervised learning techniques for landmark recognition. The

visibility of a landmark in a frame can be calculated based on

the camera’s field-of-view and the landmark’s geometric in-

formation such as location and height. Subsequently, a train-

ing dataset is generated as the union of the frames with pres-

ence of at least one target landmark. To reduce the impact

of the intrinsic noise in the geo-metadata, we present a frame

selection method that removes the mistakenly labeled frames

with a two-step approach consisting of (1) Gaussian Mixture

Model clustering based on camera location followed by (2)

outlier removal based on visual consistency. We compare

the classification results obtained from the ground truth labels

and the noisy labels derived from the raw geo-metadata. Ex-

periments show that training based on the raw geo-metadata

achieves a Mean Average Precision (MAP) of 0.797. More-

over, by applying our proposed representative frame selection

method, the MAP can be further improved by 6.4%, which

indicates the promising use of the geo-metadata in weakly-

supervised learning techniques.

1. INTRODUCTION

Recent research on supervised learning with convolutional

neural networks has received significant success in a variety

of visual tasks including image classification [1, 2], object de-

tection and recognition [3, 4]. However, most of these meth-

ods require large numbers of training images with detailed an-

notations that are labeled manually. For example in complex

scenes, it is highly beneficial for supervised object detection

to train with bounding boxes of object locations [3]. As the

process of labeling a large set of training images with class la-

bels, object locations and attributes can be tedious and expen-

sive, researchers have started utilizing other important contex-

tual information that can be automatically retrieved with the

help of various sensors. For example in landmark recogni-

tion, geographic metadata including the camera location and

viewing direction is usually utilized as geographic constraints

for efficient processing [5, 6, 7]. With the help of the ubiqui-

tous sensor-equipped smartphones, nowadays users can easily

take images and videos together with the aforementioned geo-

metadata through the use of popular apps [8]. Not only the

number of geotagged multimedia documents has been grow-

ing online rapidly [9], the spatial data about the geographic

objects (e.g., buildings) have also become increasingly avail-

able from online mapping services [10]. Both of these aspects

make the use of geographic information in computer vision

more encouraging.

Inspired by the above observations, we investigate the

problem of transforming the geographic metadata into the

training labels for landmark recognition. We build on the ef-

ficient geo-based landmark retrieval method [7] that retrieves

frames of a landmark based on the camera’s viewable scene

model and the landmark’s geometric information, but further

improve the quality of the training labels by removing out-

liers while maintaining a good balance between the visual

consistency and the visual diversity of the training data. In

terms of visual consistency, we perform a Gaussian Mixture

Model (GMM) based camera location clustering where the

visual distance between the intra-cluster members is expected

to be low. This is because the probability of a landmark hav-

ing similar visual appearances is higher among frames taken

at similar locations. Thereafter, we compute the mean feature

vector for every cluster. Only the top ratio ∈ (0, 1) frames

that are the closest to the cluster centre will be selected as rep-

resentatives, while the rest will be discarded due to the visual

inconsistency. On the other hand, the visual distance between

the inter-cluster members is likely to be high due to the dif-

ferent shooting angles, thus leading to high visual diversity

of the training data. The experimental results demonstrate

the effectiveness of our approach: training on the labels de-

rived from the raw geo-metadata obtains a promising MAP of

0.797, which is further improved by 6.4% after applying our

representative frame selection method.



2. RELATED WORK

Content-based landmark recognition has been an important

yet challenging task in computer vision. Unsupervised meth-

ods [11] do not require any ground truth labels, but good per-

formance can only be achieved when classifying visually con-

sistent objects. Fully supervised methods [12, 3] are gener-

ally more effective in object recognition by training classifiers

with class labels or annotations of object locations in terms

of bounding boxes [3] or even locations of object parts [13].

However, obtaining a massive amount of such well-labeled

annotations is usually costly, tedious, or even biased. To

solve the above issues, weakly supervised convolutional neu-

ral networks (CNNs) have been proposed recently, the goal

of which is to locate objects based on the noisy image-level

labels only [4, 14]. Oquab et al. [4] presented a novel CNN

for object classification, which relies on image-level labels,

yet can learn from cluttered scenes containing multiple ob-

jects. Xiao et al. [15] proposed a general framework to train

CNNs with only a limited number of clean labels and millions

of easily obtained noisy labels. Bekker and Goldberger [16]

focused on the problem of training a neural network based

on data with unreliable labels, and introduced an extra noise

layer in a deep neural network to model the relationship be-

tween the true labels and the noisy observed labels.

As a supplement to visual features of image content, re-

searchers have emphasized more on the use of contextual in-

formation in recent years. Several methods have been pro-

posed for landmark recognition by utilizing geographic meta-

data alternatively [17, 18, 6, 19]. For example, Zheng et

al. [5] presented a web-scale landmark recognition engine

that organizes and recognizes landmarks on the scale of the

entire planet Earth. Yin et al. [7] presented a pure geocontext-

based method called the Geo Landmark Visibility Determina-

tion (GeoLVD), which computes the visibility of a landmark

based on intersections of a camera’s field-of-view and the

landmark’s geometric information obtained from online ge-

ographic information services. Such geocontext-based meth-

ods have the advantage of being highly efficient compared

with content-based techniques, but the effectiveness can be

susceptible to the sensor noise such as the errors and un-

certainties intrinsically possessed by the geographic metadata

collected from GPS, compass and other sensors.

3. TRAINING LABEL DERIVATION FROM FREE

GEOGRAPHIC METADATA

Nowadays, sensor-equipped smartphones have made it possi-

ble for users to record geo-referenced videos all around the

world. The location and viewing direction of the camera

can be obtained from the built-in GPS and compass sensors,

which are synchronized and associated with the video frames

in a fine granularity (e.g., with the sampling interval set to one

second). Next, we briefly describe a geo-based landmark vis-

ibility determination algorithm in Section 3.1, and present a

frame selection method that removes frames with inaccurate

labels from the training set in Section 3.2.

3.1. Landmark Visibility Determination

To generate a training dataset for landmark recognition, we

need to retrieve all the frames with presence of at least one

target landmark. Here we adopt the GeoLVD method pro-

posed by Yin et al. [7] that computes the visibility of a land-

mark in a frame based on efficient geometry calculations

and occlusion checks. As input, the camera’s field-of-view

(FOV) is typically modeled by five parameters: camera lo-

cation and orientation extracted from the geo-metadata, hor-

izontal and vertical viewable angles, and the far visible dis-

tance estimated from camera optics [8]. Meanwhile, the ge-

ographic information (e.g., footprint and height) of buildings

can be easily retrieved from online mapping services such as

the OpenStreetMap1. The GeoLVD method initially returns

a set of visible angles of the landmark within the FOV. Let

yk(x) ∈ {−1, 1} represent the absence or presence of land-

mark k in frame x, then we define,

yk(x) =

{

−1 V isibleR(k, x) = ∅

1 V isibleR(k, x) 6= ∅
(1)

where V isibleR(k, x) denote the set of visible angles of land-

mark k within the FOV of frame x, returned by GeoLVD. The

effectiveness of GeoLVD depends on the accuracy of the geo-

metadata. Therefore, the training labels derived using Eq. 1

can be noisy and inaccurate [20]. To solve this problem, we

propose a representative frame selection method to reduce the

impact of the intrinsic sensor noise. The details are introduced

in the next section.

3.2. Representative Frame Selection

Generally the labels derived using Eq. 1 can be affected by

two major factors: (1) inaccurate geo-metadata and (2) occlu-

sions caused by moving obstacles, both of which lead to vi-

sually inconsistent frames compared with the majority. Based

on the observations that photos taken at similar geographic

locations are more likely to show visually similar content, we

propose to first cluster the frames based on the camera loca-

tions, and then remove outliers from each group based on the

visual features. Let g = (lat, lng) denote a camera location,

the distribution of frames showing a landmark can be well

described by a Gaussian Mixture Model (GMM) containing

n bivariate normal distributions N (µ,Σ) [21]:

P (g|π,µ,Σ) =

n
∑

i=1

πiN (g|µi,Σi) (2)

where π, µ, and Σ are the unknown model parameters that

represent the weights, mean values, and covariance matrices

1http://www.openstreetmap.org.



associated with the n normal distributions, respectively. Here

we derive the log-likelihood function as,

lnP (G|π,µ,Σ) =

m
∑

j=1

lnP (gj |π,µ,Σ) (3)

and adopt the expectation maximization (EM) algorithm to

iteratively estimate the model parameters based on the cam-

era locations, G = {g1, g2, ..., gm}, we retrieved. The EM

algorithm alternatively performs an E step that computes the

posterior probability of location g belonging to the k-th nor-

mal distribution based on the current model parameters:

P (k|g) =
πkN (g|µk,Σk)

∑n

i=1 πiN (g|µi,Σi)
(4)

and an M step that updates the model parameters by maximiz-

ing the log-likelihood given in Eq. 3 as:

πk =

∑m

j=1 P (k|gj)
∑n

k=1

∑m

j=1 P (k|gj)

µk =
1

∑m

j=1 P (k|gj)

m
∑

j=1

P (k|gj)gj

Σk =
1

∑m

j=1 P (k|gj)

m
∑

j=1

P (k|gj)(gj − µk)(gj − µk)
⊺

(5)

We repeat the the steps until the algorithm converges, and a

frame associated with location g is clustered to the group with

the largest posterior probability P (k|g).
Thereafter, we extract visual features (e.g., the HOG de-

scriptor [22] we used in this work) from all the frames, and

compute the mean feature vector for each cluster. We define

a parameter ratio ∈ (0, 1) to control the number of selected

frames. Let mk denote the number of frames in cluster k.

Then only the top ratio ·mk frames that are the closest to the

mean feature vector in cluster k will be selected as representa-

tives, while the rest of the frames will be discarded as outliers.

We use the Euclidean distance between feature vectors as the

measure of visual inconsistency. Later in the experiments, we

will see that this two-step frame selection method is effective

in reducing the noisiness of the training data and the classifier

trained using the selected representatives is able to obtain sig-

nificant MAP improvement. Next, we introduce the network

architecture we used for weakly-supervised learning.

4. NETWORK ARCHITECTURE FOR

WEAKLY-SUPERVISED LEARNING

A classifier can be trained based on the landmark annota-

tions derived in Section 3. Here we adopt the state-of-the-

art network architecture proposed by Oquab et al. [4], which

is a weakly-supervised convolutional neural network for ob-

ject classification that only requires image-level labels. The

Fig. 1: Illustration of the frames showing each of the land-

marks, sampled from the sensor-rich videos.

network architecture consists of seven convolutional feature

extraction layers, two convolutional adaptation layers, and a

single global max-pooling layer at the output that searches

the highest scoring object position in the image. The au-

thors modified the fully connected layers, which are com-

monly used in previous CNN architectures [1, 23, 24], into

convolutional layers in order to deal with input images with

different sizes. In a K class classification problem, let fk(x)
denote the output of the network for input image x and class

k, and yk(x) ∈ {−1, 1} indicate the absence or presence of

class k in image x, then the loss function for the multi-label

classification is given as,

ℓ (fk(x), yk(x)) =
∑

k

log
(

1 + e−yk(x)fk(x)
)

(6)

Subsequently, the posterior probability of class k being pre-

sented in image x can be estimated as below [4],

P (k|x) ≈
1

1 + e−fk(x)
(7)

Usually a threshold of 0.5 is adopted, and the test images

with a posterior probability equal to or larger than the chosen

threshold are considered to be the positive instances of the

target landmark.

5. EVALUATION

We have trained convolutional neural networks introduced in

Section 4 based on different training datasets. The evalua-

tion consists of three steps. The first part introduces the ex-

perimental setup and the details of the training and the test-

ing datasets. The second part evaluates our method to select

representative frames. The third part compares the results of

landmark classification and verifies the effectiveness of our

proposed approach.

5.1. Experimental Setup

To prepare our training dataset, we retrieved 280 sensor-

rich videos with the corresponding geo-metadata from the

GeoVid2 project. Users can record and upload videos us-

ing the GeoVid smartphone applications, watch videos via a

2http://geovid.org/



 0.4

 0.6

 0.8

 1

Marina Bay Sands

Esplanade Theatres

Fullerton Hotel

Secret Life of Trees

The Merlion

Universal Studios Globe

Todaiji T
emple

Ngee Ann City

P
re

c
is

io
n

100%

90%

80%

70%

60%

50%

(a) Precision

 0.9

 0.95

 1

Marina Bay Sands

Esplanade Theatres

Fullerton Hotel

Secret Life of Trees

The Merlion

Universal Studios Globe

Todaiji T
emple

Ngee Ann City

R
e

c
a

ll

100%
90%
80%
70%
60%
50%

(b) Recall

Fig. 2: Precision and recall comparison with different ratio settings in the representative frame selection.

web browser, and download videos with the publicly avail-

able GeoVid APIs3. The training dataset is formed by 9,123

frames sampled every second from the sensor-rich videos.

Additionally, we manually annotated the ground truth visibil-

ity of eight landmarks, namely the Marina Bay Sands hotel,

the Esplanade theatres, the Fullerton Hotel, the Secret Life of

Trees, the Merlion, the Universal Studios Globe, the Todaiji

temple, and the Ngee Ann City. Fig. 1 illustrates examples

of the representative frames in our training set for each of the

eight landmarks. Furthermore, we collected 200 images of

each landmark online to form a test set of 1600 images.

Next, we trained classifiers using the network architec-

ture described in Section 4. We started with a pre-trained

network from the Pascal VOC 2012 training and validation

sets provided by Oquad et al. [4], and further trained the net-

work using video frames with the ground truth annotations

labeled manually and the noisy annotations derived from the

geo-metadata. The classification results are compared and

discussed in the next section.

5.2. Frame Selection

In order to evaluate the effectiveness of our representative

frame selection method, we set the parameter ratio in Sec-

tion 3.2 to different values, and compute precision, recall and

F1 measure for each of the parameter settings.

Fig. 2 illustrates the precision and recall of each landmark

with ratio ∈ {100%, 90%, 80%, 70%, 60%, 50%}, where

ratio = 100% means that the frames are annotated based

on the raw geo-metadata as introduced in Section 3.1, and

the rest indicate that we further select a subset of represen-

tative frames by keeping the top ratio of the frames we for-

merly retrieved as introduced in Section 3.2. As can be seen,

precisions are comparatively less satisfactory when ratio =
100%. As the GeoLVD method computes a landmark’s vis-

ibility based on the raw geo-metadata only without checking

3http://api.geovid.org

the image content, it is almost impossible for it to detect oc-

clusions caused by obstacles such as people, vehicles or miss-

ing buildings in digital maps. In most of the cases, precisions

have been greatly improved after removing visually inconsis-

tent frames. But it is still difficult to make the precision close

to one for some landmarks due to the semantic gap between

low-level visual features and high-level concepts. The appear-

ance of a landmark can be diverse even when taken at similar

locations due to the change of illuminations, viewpoints, etc.

On the other hand, all landmarks have high recalls larger

than 0.9, five of them even have recalls close to one when

ratio = 100%. This is because we only kept frames with

the presence of at least one landmark. Positive instances of

a landmark that are mistakenly labeled as negative were dis-

carded, and thus did not have any impact on the recall. So un-

less two landmarks are located geographically close to each

other (e.g., Marina Bay Sands hotel and Secret Life of Trees)

where frames of one landmark can be mistakenly labeled as

the other one due to serious sensor errors, recalls mostly have

a value close to one.

Table 1 reports the F1 measure and highlights the best

score of each landmark with different ratio values. The F1

measure is computed as F1 = 2 · precision·recall
precision+recall

, which

can be considered as a good indicator for the quality of the

frame set as it considers both precision and recall. Gener-

ally the F1 measure increases when setting ratio to a smaller

value, but the improvement of F1 tends to become stable af-

ter ratio ≤ 70%. We can say that parameter ratio controls

the tradeoff between the accuracy and the diversity of the se-

lected frames, both of which are important indicators of a high

quality training set. Based on the results shown in Table 1,

ratio = 70% can be considered as a good threshold for the

training dataset generation.

5.3. Landmark Classification

We trained four classifiers based on different training datasets

and compared their effectiveness. Basically GT is equivalent



Table 1: F1 measure comparison with different ratio settings in the representative frame selection.

ratio 100% 90% 80% 70% 60% 50%

Marina Bay Sands 0.693 0.711 0.745 0.765 0.802 0.828

Esplanade Theatres 0.784 0.789 0.790 0.789 0.765 0.749

Fullerton Hotel 0.731 0.735 0.738 0.782 0.797 0.818

Secret Life of Trees 0.809 0.840 0.867 0.910 0.949 0.990

The Merlion 0.944 0.941 0.991 1.0 1.0 1.0

Universal Studios Globe 0.831 0.88 0.938 0.938 0.947 0.960

Todaiji Temple 0.942 0.954 0.969 0.977 0.973 0.966

Ngee Ann City 0.682 0.730 0.761 0.788 0.784 0.777
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Fig. 3: Classification accuracy and average precision comparison per landmark using different training sets.

Table 2: Classification effectiveness comparison using differ-

ent training sets.

Method RAW RAW0.7 RAW0.5 GT

Mean Accuracy 0.928 0.944 0.931 0.950

Mean Average Precision 0.797 0.848 0.785 0.898

to the advanced WEAK SUP method [4] by training with man-

ual labels, and this provides a good comparison of our method

to the state-of-the-art classification results.

• GT: a training set with ground truth labels.

• RAW: a training set annotated with labels derived from

the raw geo-metadata.

• RAW0.7: a subset of RAW by keeping 70% of the

frames as representatives.

• RAW0.5: a subset of RAW by keeping 50% of the

frames as representatives.

The classification accuracy and the average precision for

each landmark are illustrated in Fig. 3, and the comparison

between the mean values over all the landmarks is reported

in Table 2. Here we use average precision instead of preci-

sion, recall, and F1 measure as the former is considered as a

better metric to evaluate a ranked list. We highlight the best

and the second best results in Table 2. As can be seen, the

classifier trained based on the ground truth labels achieved

the best result and could be considered as an upper bound as

reference. As we expected, RAW0.7 achieved the second best

result and outperformed RAW by 1.72% and 6.4% in terms

of mean accuracy and mean average precision, respectively,

and therefore demonstrates the effectiveness of our frame se-

lection approach. RAW0.5 performed less satisfactory than

RAW0.7. One of the reasons might be that the gain in accu-

racy caused too much loss in diversity, and thus downgraded

the effectiveness of the classifier. For example, there is an

obvious decrease of RAW0.5 for the Fullerton Hotel and the

Universal Studio Globe in Figure 3 most likely due to the di-

versity loss, while the rest of the statistics are generally con-

sistent among different landmarks. It is also worth mention-

ing that even method RAW performed quite good, obtained

a mean classification accuracy of 0.928 and a mean average

precision of 0.797. It indicates the promising use of the geo-

metadata, which are automatically recorded without any hu-

man efforts, in weakly-supervised deep learning techniques.

6. CONCLUSIONS AND FUTURE WORK

Given a collection of sensor-rich videos, we present an effec-

tive method that can automatically generate a large training

dataset as the input of weakly-supervised learning for land-



mark recognition. The training labels (i.e., the presence or

absence of a landmark) of a frame can be efficiently deter-

mined based on the camera’s field-of-view and the landmark’s

footprint and height. As the training labels can be noisy due to

sensor errors and unpredictable occlusions, we further present

a two-step approach that aims at removing frames with inac-

curate labels considering both the distribution of camera lo-

cations and the consistency of visual content. We have com-

pared the classification performance by using our automati-

cally derived labels and the manually annotated ground truth

labels. Promising results have been reported on the use of the

geographic metadata in weakly-supervised learning.

In our future work we plan to evaluate the use of the

geographic information in other components of supervised

learning, e.g., model label correlations based on both geo-

information and visual features, to further improve the classi-

fication accuracy.
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