
Multi-scale Graph Convolutional Network for Intersection
Detection from GPS Trajectories

Yifang Yin∗, Abhinav Sunderrajan#, Xiaocheng Huang#, Jagannadan Varadarajan#,
Guanfeng Wang#, Dhruva Sahrawat∗, Ying Zhang∗, Roger Zimmermann∗, and See-Kiong Ng∗

∗National University of Singapore, Singapore
#GrabTaxi Holdings, Singapore

∗{idsyin, seekiong}@nus.edu.sg, {dhruva, zhangyin, rogerz}@comp.nus.edu.sg
#{abhinav.sunderrajan, xiaocheng.huang, jagan.varadarajan, guanfeng.wang}@grab.com

ABSTRACT

To facilitate the reconstruction of high-quality road networks,

intersections as the key locations provide valuable information

about the network topology.However, only a few efforts have been

made on the data-driven automatic detection of intersections from,

e.g., large-scale GPS trajectories. To bridge the gap, we propose a

machine learning based intersection detection approach based on

large-scale real-world GPS trajectories of drivers from the Grab

ride-hailing service. Instead of representing locations with vector

descriptors, we innovatively propose a graph representation

that models a location together with its local surroundings to

improve the descriptiveness of the location descriptors. Moreover,

we present a multi-scale graph convolutional network (GCN)

to generate robust graph-level descriptors, followed by logistic

regression to discriminate intersections from non-intersections.

The experimental results show that our proposed multi-scale

graph model outperforms the conventional multi-scale vector

representation by 8.5%. Appealingly, the proposed graph represen-

tation can be considered as a general location descriptor, which

can be used in a variety of geo-based applications other than

intersection detection for location modeling.

CCS CONCEPTS

• Information systems→ Geographic information systems;

• Computing methodologies→ Neural networks.

KEYWORDS

Intersection detection; graph convolutional network; multi-scale

feature fusion; large-scale real-world GPS data

1 INTRODUCTION

Grab [13] as a smartphone-enabled ride-hailing service provider

similar to Uber and Lyft, has been seen exponential growth in re-

cent years [6]. With the smartphone app, Grab is able to collect

the location of its drivers with rich sensor data such as bearing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GeoAI’19, November 5, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6957-2/19/11. . . $15.00
https://doi.org/10.1145/3356471.3365234

…

Multi-scale Graph

Representation

G
ra

p
h

 C
o

n
v

o
lu

tio
n

a
l N

e
tw

o
rk

…

Multi-scale Graph-

level Representation

M
u

lti-sca
le

 F
e

a
tu

re
 F

u
sio

n

Prediction

GPS Trajectories

F
e

a
tu

re
 E

x
tra

ctio
n

�
!

�
"

#$
!

#$
"

Figure 1: System overview of our proposed intersection de-

tection method.

and speed to provide high-quality ride hailing services. Recent re-

search has made great efforts to reconstruct this underlying road

network from GPS trajectories automatically, in order to aid in the

construction ofmaps [1]. A road network is usually denoted as a di-

rected graph, where the vertices represent the key points and the

edges represent the road segments between them [12]. Recently,

a few efforts have been made to first detect road junctions, such

that next the road network can be constructed more conveniently

by connecting the detected intersections based on GPS trajecto-

ries [8]. However, the effectiveness of earlier work can be limited

due to issues including threshold selection, model simplicity, lack

of large-scale training data, etc.

The service of ride-hailing providers relies significantly on the

quality of the digital map. Though OpenStreetMap (OSM) provides

the community user-generated maps of the world, its data com-

pleteness and accuracy vary significantly in different cities. Con-

sidering the high cost of manual corrections of the map data, Grab

would like to develop data-driven approaches that can learn from

cities with high quality map data (e.g., Singapore) to automatically

discover missing roads and intersections in cities with poor map

data (e.g., Jakarta). To this end, we present in this paper a novel

multi-scale graph convolutional network [9] that can effectively

detect intersections from large-scale GPS trajectories. The system

overview is illustrated in Figure 1. We formulate the intersection

detection as a two-class classification problem. To extract descrip-

tive features, we improve existing shape descriptors in the follow-

ing two aspects: 1) we extract multi-scale features using shape de-

scriptors with different sizes, and 2) we propose a graph represen-

tation that models a location together with the local environment

https://doi.org/10.1145/3356471.3365234

GeoAI’19, November 5, 2019, Chicago, IL, USA Yifang Yin, et al.

Figure 2: Use multiple shape descriptors of different sizes at

the target location.

in the nearby regions. With themulti-scale graph representation as

input, denoted asG
j

k
, we next perform graph convolutions to effec-

tively encode not only node features but also graph substructures

to generate robust graph-level representations, denoted as Z̃
j

k
, for

each input location where k represents the k-th location and j rep-

resents the j-th scale. Finally, we fuse the multi-scale graph-level

representations based on feature concatenation and apply logistic

regression to discriminate intersections from non-intersections.

2 INTERSECTION DETECTION

To train an intersection detector, we first extract feature descrip-

tors for locations by processing the nearby GPS traces. Next, we

train a multi-scale graph convolutional network, which is capable

of detecting intersections with various sizes and orientations.

2.1 Location Modeling

To extract location feature vectors, we adopt the shape descriptor

proposed by Fathi and Krumm [4]. At a given location, the shape

descriptor divides the nearby regions into multiple histogram bins.

We process the trajectories and only keep the ones passing through

the inner circle of the shape descriptor to reduce noise. For every

kept GPS trajectory, we add one point to each of the bins that the

trajectory passes through. We map the bins to a vector and nor-

malize it using the L1 norm. Similarly, we also quantize the mov-

ing direction of the GPS points into bins, map it to a vector, and

normalize it using the L1 norm. The feature vectors that were ex-

tracted based on vehicles’ locations and moving directions are next

concatenated into a single feature vector at each location as the lo-

cation descriptor. Let L denote a set of locations with n samples,

and X = {x1, x2, ..., xn} denote the corresponding normalized fea-

ture descriptors extracted at locations in L. The classifier directly

trained on X may suffer from low accuracy due to the sensitivity

of the shape descriptor to the scale and orientation of intersections.

To solve these issues, we modify the shape descriptor in the follow-

ing two aspects to make it more descriptive and robust.

Using descriptors of different sizes. Probably themost straightfor-

ward solution is to use multiple shape descriptors of different sizes

at each location to exact features at different scales, and let the clas-

sifier learn from the most representative features at each location.

As shown in Figure 2, instead of using a global shape descriptor, we

use, e.g., three different size descriptors with the radius of the inner

circle set to 10, 20, and 30 meters, respectively. Thereby, three fea-

ture vectors are extracted to capture the local distribution of GPS

points around a location at three different scales, which are next

Edge

connected

adjacent

locations

Node Feature Node Feature Node Feature

Target

location

Auxiliary locations

Targ

Auxiliary l ationslocaloocaoca

E

cc

a

l

c

a

Figure 3: Model the target location and the corresponding

local environment as a graph.

passed to a neural network where improved classification results

can be obtained by applying feature fusion techniques.

Modeling locations as graphs. As pointed out by Chen et al. [3],

road junctions do not occur in isolation and their characteristics

such as size and orientation can be closely related to the location

environment. Based on this observation, we propose to use a graph

to represent a location and model the intersection detection as a

multi-graph classification problem. As illustrated in Figure 3, in ad-

dition to the target location (i.e., the location for which we want to

detect if it is an intersection or not), we also sample eight auxiliary

locations in the nearby regions. We add edges (with weight set to

one) between vertical and horizontal neighbors to represent the

relationship of locations in the geospatial domain. We extract fea-

tures using the shape descriptor at each of the nine locations and

associate them with the corresponding node as the node feature.

The above two feature modeling methods focus on different as-

pects, and therefore can be combined to generate a multi-scale

graph representation. Formally, let L denote a set of locations with

n samples, and G̃ = {G1,G2, ...,Gn} denote the corresponding

multi-scale graph representation of locations in L. For eachGk ∈ G̃,

Gk = {G1
k
,G2

k
, ...,Gm

k
} is a set of graphs with the same structure

but different node features, and m is the number of different size

shape descriptors we use for node feature extraction. Based on this

representation, we next present a multi-scale graph convolutional

network for intersection detection.

2.2 Multi-scale Graph Convolutional Network

Formally, an input graph is represented as G = (V,E,A) (we omit

the super- and sub-scripts ofG
j

k
for presentation simplicity) where

V is the set of nodes, E is the set of edges, and A is the adjacency

matrix. Let vi ∈ V denote a node and ei j = (vi ,vj) ∈ E denote

an edge. The adjacency matrix A is a 9 × 9 matrix with Ai j = 1 if

ei j ∈ E.

With the graph structure and node features as inputs, we pass

Gk = {G1
k
,G2

k
, ...,Gm

k
} to a shared-weight two-layer GCN with 50

hidden units followed by ReLU activation and Dropout to obtain a

graph-level representation by concatenating node representations.

Let X̃ represent the node information matrix, the i-th row of which

is the feature vector of nodevi . The graph convolution layer takes

the following form [7]:

Z = f (D̃− 1
2 ÃD̃− 1

2 X̃W) (1)

Multi-scale GCN for Intersection Detection from GPS Trajectories GeoAI’19, November 5, 2019, Chicago, IL, USA

where Ã = A + I is the adjacency matrix of the graph with added

self-loops, D̃ is the diagonal degree matrix with D̃ii =
∑
j Ãi j . W

is a matrix of trainable parameters of the graph convolution layer.

f is a nonlinear activation function, for which we choose ReLU

activation in our architecture. Z is the output matrix of the graph

convolution layer.

The graph convolution can effectively encode both graph sub-

structures and node features, which is very helpful for multi-graph

classification. We generate a compact representation for each in-

put graph by concatenating the node features outputted by the

two-layer graph convolutional network into a graph-level feature

vector, denoted as Z̃
j

k
corresponding to input graph G

j

k
.

Next, we fuse the multi-scale graph representations

{Z̃1
k
, Z̃2

k
, ..., Z̃m

k
} encoded at each location lk ∈ L. We first

pass Z̃
j

k
to one shared-weight fully-connected layer with 50

hidden units followed by ReLU activation, and then aggregate

the output features based on concatenation. The output layer of

our proposed graph convolutional network contains only one

unit indicating the probability of the input location being an

intersection or not. As this is a two-class classification problem,

we apply Sigmoid activation at the output layer and adopt the

binary cross-entropy as our loss function.

3 EVALUATION

3.1 Experimental Dataset and Settings

The evaluation dataset is collected in Singapore by Grab and is

used for evaluating the classification accuracy of our proposed in-

tersection detection algorithm. It contains tracks of 7,461 drivers

and 4,687,072 GPS points in total, with a sampling rate of one GPS

point in every five seconds. The ground-truth locations of intersec-

tions are derived using the python library OSMnx [2] from Open-

StreetMap, which is an open project that provides user-generated

maps of the world [5]. The locations of non-intersections are ran-

domly sampled on and off roads that are at least 100 meters away

from any intersection. The locations without any GPS points in

the nearby regions for feature extraction are removed. We further

divide the dataset into 80%-20% splits for training and evaluation.

For the shape descriptor, we used 6 circles, 16 angular slices, and

36 moving direction bins. Followed the settings suggested by Fathi

and Krumm [4], we set the ratio between radii of consecutive cir-

cles to be 1.3.

3.2 Classification Accuracy Comparison

We compare the following four intersection detection methods to

justify the effectiveness of our proposed approach.

• Vector: This method uses the vector descriptor xk gener-

ated based on a global shape descriptor as the input feature

to train a simple neural network with two hidden layers as

the classifier.

• Multi-scale Vector: This method concatenates multi-scale

vector descriptors generated based on different size shape

descriptors as the input feature to train a simple neural net-

work with two hidden layers as the classifier.

• Graph: This method uses the single-scale graph represen-

tation we proposed as the input feature to train a two-layer

Table 1: Intersection classification comparison of different

methods on the Singapore dataset: precision, recall, and F1

measure on locations of intersections.

Methods Scale Precision Recall F1

Vector

10 0.71 0.56 0.62

20 0.70 0.65 0.67

30 0.73 0.68 0.70

Multi-scale

Vector
- 0.73 0.68 0.70

Graph

10 0.71 0.71 0.71

20 0.73 0.75 0.74

30 0.75 0.78 0.77

Multi-scale

Graph
- 0.75 0.81 0.78

Table 2: Intersection classification comparison of different

methods on the Singapore dataset: precision, recall, and F1

measure on locations of non-intersections.

Methods Scale Precision Recall F1

Vector

10 0.62 0.76 0.68

20 0.66 0.71 0.68

30 0.66 0.73 0.69

Multi-scale

Vector
- 0.68 0.73 0.71

Graph

10 0.70 0.69 0.69

20 0.73 0.70 0.71

30 0.76 0.72 0.74

Multi-scale

Graph
- 0.78 0.72 0.75

graph convolutional network, followed by one output layer

as the classifier.

• Multi-scale Graph: This method uses the multi-scale

graph representation we proposed as the input feature to

train a two-layer graph convolutional network, followed

by multi-scale feature fusion sub-network and one output

layer as the classifier.

Tables 1 and 2 reports the precision, recall, and F1 measure ob-

tained by different intersection detection methods. Column scale

in the tables refers to the radius of the inner circle of the shape de-

scriptor we used for feature extraction. As can be seen, method

Vector performed unstable with different scale settings. This is

because this method only used one global shape descriptor to ex-

tract features from GPS trajectories, which is not sufficient to cap-

ture the correct scale at different locations. Methods Multi-scale

Vector and Graph improved method Vector in two different as-

pects as introduced in Section 2 and therefore they were able to

obtain better classification results at both intersections and non-

intersections. Comparatively, method Graph is more effective as

it models a location with additional features of the local environ-

ment. It outperformed method Vector at all scales in terms of the

F1 measure. Finally, methodMulti-scale Graph combines the ad-

vantages of Multi-scale Vector and Graph, which obtained the

best classification results: F1 measure of 0.78 and 0.75 at locations

of intersections and non-intersections, respectively.

GeoAI’19, November 5, 2019, Chicago, IL, USA Yifang Yin, et al.

Figure 4: Comparison of the precision-recall curve of the

multi-scale vector model and the proposed multi-scale

graph model.

One advantage of machine learning based methods for intersec-

tion detection compared to traditional heuristic methods is that we

can easily draw the precision-recall curve and choose an appropri-

ate threshold to balance the tradeoff between precision and recall

based on the system requirements. Figure 4 shows the precision-

recall curves obtained by the multi-scale vector model and our pro-

posedmulti-scale graphmodel. From the figure we can see that our

proposedmulti-scale graphmodel outperforms themulti-scale vec-

tor model by a large margin. Our model is able to obtain a high pre-

cision (e.g., larger than 0.8) with a recall up to 0.7. The precision

only goes down quickly when the recall is larger than 0.8. Com-

paratively, the multi-scale vector method is struggling to obtain a

precision larger than 0.8, which indicates the effectiveness of our

proposed graph representation for classification.

4 RELATED WORK

Automatic intersection detection has been a critical research prob-

lem for a variety of AI and LBS applications. Heuristic methods

define intersections as locations where the drivers change their

moving directions or locations that connect more than two road

segments. For instance, Wu et al. presented a clustering-based in-

tersection detection algorithm from coarse-gained GPS data [10].

Xie et al. proposed to detect the longest common subsequences be-

tween pairs of GPS trajectories [11]. However, the aforementioned

methods mostly suffer from thresholding, resulting in undetected

or falsely detected intersections. For machine learning based meth-

ods, Fathi and Krumm presented the first work on training a clas-

sifier based on a shape descriptor extracted from GPS traces to de-

tect road intersections [4]. They adopted a 2D circular window as

the local shape descriptor, which described the distribution of GPS

points at each location on the map. Next, a classifier that used the

Adaboost algorithm was trained based on the shape descriptors.

Chen et al. followed this path and further proposed a scale- and

rotation-invariant descriptor for intersection detection [3]. Con-

sidering that the road junctions can have different sizes depending

on the local environments, they proposed to estimate the scale and

canonical orientation at each location before feature extraction. Fi-

nally, an SVM was trained to recognize intersections and the cor-

responding types. However, due to the lack of public large-scale

and high-sampling rate GPS trajectory datasets, the development

of machine learning techniques for automatic intersection detec-

tion is still in its early stage where only simple feature descriptors

and classifiers were adopted and evaluated in previous work.

5 CONCLUSION AND FUTUREWORK

We innovatively propose to model a location using a graph repre-

sentation, and subsequently propose a multi-scale graph convolu-

tional network to perform classification for intersection detection

from GPS trajectories. Our proposed graph representation is more

descriptive and robust compared to traditional feature vector rep-

resentations as it not only models the target location but also se-

lects several auxiliary locations in the neighborhood to model the

corresponding local environment. In the future, we plan to exploit

more variations in terms of the graph structure, e.g., the number

and position of the nodes, the weight of the edges, etc. for the graph

representation extraction.

ACKNOWLEDGMENT

This work was funded by the Grab-NUS AI Lab, a joint collabora-

tion between GrabTaxi Holdings Pte. Ltd. and National University

of Singapore.

REFERENCES
[1] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. 2015.

A Comparison and Evaluation of Map Construction Algorithms using Vehicle
Tracking Data. Geoinformatica (2015), 601—-632.

[2] Geoff Boeing. 2017. OSMnx: New Methods for Acquiring, Constructing, Ana-
lyzing, and Visualizing Complex Street Networks. Computers, Environment and
Urban Systems (2017), 126–139.

[3] Chen Chen, Cewu Lu, Qixing Huang, Qiang Yang, Dimitrios Gunopulos, and
Leonidas Guibas. 2016. City-Scale Map Creation and Updating Using GPS Col-
lections. In International Conference on Knowledge Discovery and Data Mining.
1465–1474.

[4] Alireza Fathi and John Krumm. 2010. Detecting Road Intersections from GPS
Traces. International Conference on Geographic Information Science (2010).

[5] M. Haklay and P. Weber. 2008. OpenStreetMap: User-Generated Street Maps.
IEEE Pervasive Computing (2008), 12–18.

[6] David King, Deborah Salon, and MatthewConway. 2018. Trends in Taxi Use and
the Advent of Ridehailing, 1995–2017: Evidence from the USNational Household
Travel Survey. Urban Science 2 (2018).

[7] Thomas N Kipf and Max Welling. 2016. Semi-supervised Classification with
Graph Convolutional Networks. CoRR (2016). https://arxiv.org/abs/1609.02907

[8] Radu Mariescu-Istodor and Pasi Fränti. 2018. CellNet: Inferring Road Networks
from GPS Trajectories. ACM Transactions on Spatial Algorithms and Systems
(2018), 8:1–8:22.

[9] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The
Graph Neural Network Model. IEEE Transactions on Neural Networks (2009),
61–80.

[10] Junwei Wu, Yunlong Zhu, Tao Ku, and Liang Wang. 2013. Detecting Road Inter-
sections from Coarse-gained GPS Traces Based on Clustering. Journal of Com-
puters (2013), 2959–2965.

[11] Xingzhe Xie, Wenzhi Liao, Hamid Aghajan, Peter Veelaert, and Wilfried Philips.
2016. A Novel Approach for Detecting Intersections from GPS Traces. In IEEE
International Geoscience and Remote Sensing Symposium. 1816–1819.

[12] Yifang Yin, Rajiv Ratn Shah, and Roger Zimmermann. 2016. A General
Feature-based Map Matching Framework with Trajectory Simplification. In
ACM SIGSPATIAL International Workshop on GeoStreaming. 7:1–7:10.

[13] Zhiyin Zhang, Xiaocheng Huang, Chaotang Sun, Shaolin Zheng, Bo Hu, Jagan
Varadarajan, Yifang Yin, Roger Zimmermann, and Guanfeng WANG. 2019. Sex-
tant: Grab’s Scalable In-Memory Spatial Data Store for Real-Time K-Nearest
Neighbour Search. In International Conference on Mobile Data Management.

https://arxiv.org/abs/1609.02907

	Abstract
	1 Introduction
	2 Intersection Detection
	2.1 Location Modeling
	2.2 Multi-scale Graph Convolutional Network

	3 Evaluation
	3.1 Experimental Dataset and Settings
	3.2 Classification Accuracy Comparison

	4 Related Work
	5 Conclusion and Future Work
	References

