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ABSTRACT

Recognizing ongoing events based on acoustic clues has been a crit-

ical research problem for a variety of AI applications. Compared to

visual inputs, acoustic cues tend to be less descriptive and less con-

sistent in time domain. The duration of a sound event can be quite

short, which creates great difficulties for, especiallyweakly labeled,

audio tagging. To solve these challenges, we present a novel end-to-

end multi-level attention model that first makes segment-level pre-

dictions with temporal modeling, followed by advanced aggrega-

tions along both time and feature domains. Our model adopts class-

aware attention based temporal fusion to highlight/suppress the

relevant/irrelevant segments to each class. Moreover, to improve

the representation ability of acoustic inputs, a new multi-level fea-

ture fusion method is proposed to obtain more accurate segment-

level predictions, as well as to perform more effective multi-layer

aggregation of clip-level predictions. We additionally introduce a

weight sharing strategy to reduce model complexity and overfit-

ting. Comprehensive experiments have been conducted on the Au-

dioSet and the DCASE17 datasets. Experimental results show that

our proposedmethodworks remarkably well and obtains the state-

of-the-art audio tagging results on both datasets. Furthermore, we

show that our proposed multi-level fusion based model can be eas-

ily integrated with existing systems where additional performance

gain can be obtained.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Informa-

tion systems→ Multimedia databases;
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1 INTRODUCTION

Audio as an import type of multimedia data contains rich and valu-

able information about what is happening around. Audio analysis

such as sound event detection and acoustic scene classification has

been attracting a continuously growing attention during the past

years [24]. To recognize the sound events that happen in the audio

can be of great help for many applications including surveillance,

video indexing, smart cars, and context-aware services. For exam-

ple, the accurate detection of warning and vehicle sounds such as

car alarm and car passing by is an important and desired compo-

nent in smart car applications [23].

An audio clip usually contains various foreground sounds and

background noise, which makes the detection of sound events to

be a highly challenging problem. To accelerate the development

of advanced audio analysis techniques, Google recently released a

large-scale audio dataset named AudioSet, which consists of over

twomillion 10-second YouTube video clips with annotations of 527

sound events [9]. This dataset provides comprehensive coverage

of real-world sounds to drive the development of data-driven ma-

chine learning based approaches in the field of audio processing.

However, due to the difficulty in collecting the ground truth labels,

only clip-level weak labels are available in the AudioSet for train-

ing. Figure 1 illustrates an example in the AudioSet. Compared to

visual content analysis, weakly labeled audio tagging tends to be

much more difficult and challenging due to: (1) the duration of a

sound event is mostly much shorter than the visual presence of an

object; and (2) acoustic features (e.g., log-mel spectrogram) tend to

be less representative and descriptive than visual features. While

traditional methods assume the segments of an audio share the

same clip-level labels [8], more recent studies tend to model the

weakly labeled audio tagging as a multiple instance learning (MIL)

problem [10, 31]. Audio clips are first divided into non-overlapping

segments with a fixed window size, which are next processed and

aggregated to generate clip-level predictions for supervision. As

the duration of a sound event may vary significantly, most of the

existing work focused on modeling the importance of different

audio segments when making the final clip-level predictions [4,
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Figure 1: Illustration of an example in the AudioSet. Only

clip-level annotations are available for training.

5, 21]. To increase the descriptiveness of acoustic features, multi-

level features from intermediate layers of a neural network can be

fused to improve the representation ability [5, 37]. There are a few

studies that apply multi-level feature fusion, but mostly aggregate

the features into a high-level representation based on simple solu-

tions such as feature concatenation [17, 37] or weighted average fu-

sion [13, 22]. More advanced multi-level feature fusion techniques

have not yet been extensively studied in this field.

We present in this paper a novel end-to-end multi-level at-

tention model for large-scale weakly labeled audio tagging. Our

method belongs to the category of instance-level MIL approach. It

first trains a classifier to make segment-level predictions, which

are next aggregated based on class-aware attentions to obtain

the clip-level predictions. On one hand, we adopt a bi-directional

GRU based RNN as the instance-level classifier to incorporate the

temporal patterns of sound events in a clip. On the other hand,

we model the attention scores of each segment locally based on

fully connected layers. This strategy is designed based on the

observation that the importance of neighboring segments can

be less correlated as the content may change frequently in a

short period of time in audios. Moreover, we use class-specific

attentions instead of a single class-agnostic importance score

for each segment. This strategy, termed as class-aware attention,

has been shown to be effective in weakly labeled sound event

detection [4, 12]. To increase the descriptiveness of the input

acoustic features, we further propose a novel multi-level feature

fusion approach based on weight sharing to obtain improved

accuracy in both segment-level and clip-level predictions. Layer-

specific clip-level predictions are computed and averaged to

obtain the final tagging results. Existing methods mostly fuse the

features from intermediate layers by concatenation or weighted

average [13, 17, 37], the performance of which is not robust due to

the method’s simplicity. Our method, comparatively, captures the

common patterns among features from different layers based on

shared-weight sub-networks, which reduces overfitting especially

on small to moderate datasets. Moreover, our method is robust

to the hyper-parameter settings. Based on a fusion of features

from 10 intermediate layers, our method is still able to achieve the

state-of-the-art classification accuracy (mean average precision of

0.361) on the AudioSet dataset.

We summarize the key contributions of this work as follows:

• We present a state-of-the-art end-to-end multi-level atten-

tion model, which simultaneously performs class-aware at-

tention based temporal aggregation of segment-level predic-

tions and average pooling based multi-layer fusion of clip-

level predictions, for weakly labeled audio tagging.

• We propose a novel multi-layer feature fusion method

and introduce weight sharing mechanism to reduce model

complexity and overfitting. Earlier methods mostly fuse

features based on concatenation or weighted average,

which perform less robust due to method’s simplicity.

• We integrate our proposed multi-level attention model with

a top ranked system in DCASE17 challenge and train the

whole system in an end-to-end manner. The audio tagging

F1 score is improved by 2.6%, which indicates the integra-

tion of our proposed method in existing systems can lead to

potential performance gain.

• Extensive experiments have been conducted on both the Au-

dioSet and the DCASE17 datasets. We justify the effective-

ness of each component of our multi-level attention model

and compare it to the state-of-the-arts to demonstrate the

advance of our proposed techniques.

The rest of the paper is organized as follows. We report the im-

portant related work in Section 2. Section 3 provides a formal def-

inition of the audio tagging problem, and introduces the proposed

single-level and multi-level attention models with weight sharing

mechanism. Section 4 reports the experimental results on model

justification and comparison with the state-of-the-art methods on

two large-scale public datasets. Finally, Section 5 concludes and

suggests future work.

2 RELATED WORK

Audio tagging is the task of recognizing the type of sound events

that are present in an audio clip. Inspired by the great success

of Deep Neural Networks (DNNs) on image classification [27, 34,

35], recently Convolutional Neural Networks (CNNs) and Recur-

rent Neural Networks (RNNs) have been widely applied to audio

processing where the state-of-the-art performances have been ob-

tained in the field of, e.g., acoustic event detection and acoustic

scene classification [9, 36]. For instance, Xu et al. [33] presented a

gated convolutional neural network for audio classification, which

has won the 1st place in the audio tagging task of Detection and

Classification of Acoustic Scenes and Events (DCASE) 2017 chal-

lenge. Chen et al. [4] proposed a class-aware self-attention model,

which aims at generating discriminative clip-level feature repre-

sentations for sound event detection. Kumar et al. described a CNN-

based framework for sound event detection and classification with

transfer learning [15]. They trained a model on supplementary au-

dio data, which is next adapted for new tasks by introducing adap-

tation layers. Additionally, frameworks based on multimodal anal-

ysis have also been proposed recently, to achieve effective classifi-

cation results by applying advanced feature fusion techniques [20,

25, 36].
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Audio tagging based on weak labels is a highly challenging

problem. Sound events mostly occur only for a short period of

time in an audio clip, but weak labels are audio-level tags without

the time stamps of the audio events. To solve this problem,

multiple instance learning (MIL) can be applied where a single

label is assigned to a bag of instances for training [10]. Wang et

al. performed a comparative study of five multiple instance learn-

ing pooling functions for sound event detection, i.e., max pooling,

average pooling, linear softmax, exponential softmax, and atten-

tion pooling [31]. Kong et al. [12] presented an attention-based

CNN model with mini batch balancing to tackle the imbalance

problem on the Audio Set dataset [9]. Chou et al. proposed to

train their model by considering both clip-level and segment-level

supervisions [5]. Guo et al. presented a novel attention-based

DNN framework that takes advantages of both frequency model-

ing with CNNs and temporal modeling with RNNs for acoustic

scene classification [6]. Yu et al. further proposed a decision-level

attention model that applies multiple attention modules on the

intermediate layers of a neural network [37], the outputs of which

are next concatenated to generate a clip-level representation for

supervision. Kong et al. [13] further presented a feature-level

attention model that aggregats segment-level features based on

attention pooling to generate a clip-level representation. The

utilization of multi-level features from different layers of a neural

network have been shown to be effective in the field of video and

audio processing [17, 22]. The extracted features from different

layers are mostly concatenated to form a single vector, based on

which a new classifier will be trained to make the final predictions.

3 MULTI-LEVEL CLASS-AWARE ATTENTION
MODEL FOR AUDIO TAGGING

Weakly labeled audio tagging is typically modeled as a Multiple

Instance Learning (MIL) problem [31]. Here we first formulate the

problem and present a single-level recurrent neural network with

instance-level class-aware attention pooling to solve the MIL prob-

lem. Next, we extend the framework to a novel multi-level atten-

tion model with weight sharing mechanism for efficient training

and accurate tagging.

3.1 Problem Formulation

Given a training set D = {(x, y)|x ∈ X, y ∈ {0, 1}C }, where X is

a set of audio clips, y denotes a binary vector of clip-level labels,

and C is the number of sound events. Our goal is to learn a model

from D supervised by clip-level labels y to predict the occurrence

of the C events in an input audio clip. As multiple sound events

may occur in a single audio clip, we formulate the audio tagging

task as a multi-label classification problem.

3.2 Class-aware Attention based Multiple
Instance Learning

Recently, attentionmodel based Recurrent Neural Networks (RNN)

have been widely adopted for video analysis such as video cap-

tioning [19] and human action recognition [28]. However, only

a few attempts have been made on audio processing where the

improvements introduced by the attention module are quite lim-

ited [6, 32]. Here we present an effective class-aware attention

based RNN for audio tagging. The system overview is illustrated in

Figure 2, which consists of three components, namely the feature

encoder, the class-aware attention module, and the classifier.

Feature Encoder: The feature encoder module takes acoustic

features (e.g., raw waveforms [3], log-mel spectrogram [36],

MFCC [2], etc.) extracted from the input clip, and generates

high-level semantic embeddings, which will be next used for

segment-level attention estimation and sound event occurrence

prediction. As audios can be of arbitrary length, the input clip

x is generally divided into non-overlapping frames with a fixed

window size, denoted as x = {x1, x2, ..., xM}, before being passed

to the feature encoder network. For example, Google utilized

a VGG-inspired model [8], which takes log-mel spectrogram

of 0.96 s audio segments as the input and transforms it to a

128-dimensional acoustic embedding. In our system, the feature

encoder is a relatively independent component. Pre-trained

feature encoder such as the Google VGGish network trained

on the YouTube-8M [8] can be leveraged to extract the acoustic

embeddings first. It is also possible to implement a task-specific

feature encoder and train the whole system in an end-to-end

fashion. The acoustic embeddings generated by the feature

encoder is denoted as h = {h1, h2, ..., hM} where hi corresponds

to xi, representing the acoustic feature of the i−th segment of the

input clip.

Class-aware attention: As aforementioned, an input clip is di-

vided into non-overlapping segments, and the importance of dif-

ferent segments can vary significantly regarding its contribution

to the final prediction results. Instead of using the average pool-

ing strategy, we introduce the class-aware attention module to dy-

namically adjust the importance of segment i based on hi. Let si =

{si ,1, si ,2, ..., si ,C } represent the class-aware importance score of

segment i , where si ,c is the importance of segment i correspond-

ing to sound event c . We compute si as

si = Sigmoid(Watthi + batt) (1)

where Watt and batt are the learnable parameter matrix and bias

vector, respectively. Here we choose Sigmoid as the activation func-

tion to make the importance score si be in the range of [0, 1]. We

further apply a class-wise L1 normalization to s as

αi ,c =
si ,c∑
M

i=1 si ,c
(2)

to ensure that
∑
M

i=1 αi ,c = 1 for each sound event c . The class-

aware importance scores αi ,c estimated by the attention module

will be next used for the attention-based fusion of segment-level

predictions. As aforementioned, since audio content may change

frequently in a short period of time, the importance of neighboring

segments tends to be less correlated. Therefore, wemodel the class-

aware attention based on segment embeddings locally using fully-

connected layers only.

Classifier: The classifier takes the acoustic embeddings

h = {h1, h2, ..., hM} as input and outputs segment-level predic-

tions p = {p1, p2, ..., pM}. Here we choose the gated recurrent

unit (GRU) based RNN as our classifier. The acoustic features h are

fed to a single layer bi-directional GRU RNN, followed by a fully-

connected layer with Sigmoid activation. Unlike the attention
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Figure 2: Architecture of the single-level class-

aware attention model.
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Figure 3: Overall architecture of our proposed multi-level class-aware

attention model with weight sharing mechanism.

modeling, we have found during experiments that it is beneficial

to incorporate temporal information to make segment-level

predictions. Therefore we choose the RNN as our classifier for the

temporal modeling. The segment-level predictions are aggregated

into the clip-level prediction ŷ based on the class-aware attention

scores αi as

ŷ =

M∑

i=1

αi ⊙ pi (3)

where αi = [αi ,1,αi ,2, ...,αi ,C ] ∈ R1×C , pi ∈ R1×C , and ⊙ rep-

resents the element-wise multiplication of the two vectors. Subse-

quently, we formulate the final objective function as

Ls = ξ (y, ŷ) = −

C∑

c=1

(yc log(ŷc ) + (1 − yc ) log(1 − ŷc )) (4)

where yc and ŷc are the true and predicted clip-level scores of

sound event c, respectively.

The class-aware attention mechanism has been recently pro-

posed to address the issue of average pooling in weakly labeled

audio tagging [4, 12]. It has the advantage of making the model

to learn from data, in order to highlight relevant segments as

well as to suppress irrelevant noises at the same time for every

sound event. Existing work can be divided into two categories:

embedding-level MIL approach and instance-level MIL approach.

Embedding-level MIL approach [4] uses attention pooling to

generate a clip-level representation, based on which a clip-level

classifier is trained to provide the final prediction. Instance-level

MIL approach [12] trains instance-level classifier to obtain

segment-level predictions, which are next aggregated based on

attention pooling to obtain the final prediction. Our method be-

longs to the second category. We improve the previous work [12]

by incorporating the temporal patterns during prediction, while

Kong et al. processed the audio segments independently.

3.3 Multi-Level Fusion based Attention Model
with Weight Sharing

Previous work has shown that improved predictions can be ob-

tained by utilizing multi-level features from intermediate layers

of the neural network [17, 37]. We follow this path and propose

a novel end-to-end multi-level attention model with weight shar-

ing mechanism. The system overview is illustrated in Figure 3.

Let h0 = {h01, h
0
2, ..., h

0
M
} represent the output feature of one in-

termediate layer in the feature encoder module. Here we propose

to transform h0 into a set of different feature embeddings with

the same dimension, denoted as H = {h1,h2, ..., hK}, via K sub-

sequent non-linear transformations to increase the representation

ability of the input samples. Instead of using only the final output

feature hK, our multi-level attention model use all the K features

H = {h1, h2, ..., hK} for supervision. Our initial attempt is to apply

multiple attention modules and classifiers, which have the same

architecture as in the single-level model introduced in Section 3.2,

to every hk ∈ H. Let αk, pk and ŷk represent the class-aware at-

tention, segment-level prediction, and clip-level prediction learnt

based on hk, respectively.We formulate the final objective function

of the multi-level attention model as

Lm =
1

K

K∑

k=1

ξ (y, ŷk) (5)

Subsequently, the final prediction ŷ = 1
K

∑
K

k=1
ŷk is computed

based on an average pooling of yk , where K equals to the num-

ber of features in H. Generally speaking, this strategy is able to

obtain the state-of-the-art audio tagging performance, but it has

one drawback that the number of parameters in the attention and

the classifier modules grows linearly with the number of features

in H. To optimize system performance, we propose to reduce the

number of learnable parameters based on weight sharing. As afore-

mentioned, the features in H are designed to have the same di-

mension to enable the weight sharing mechanism in both the at-

tention module and the classifier. Through the experiments, we

have found that it is beneficial to share the weights of the sub-

network of the attention module and the GRU cells in the classi-

fier among different hk. We remain the parameters in the fully-

connected layers of the classifier to be dependent on hk, which is

sufficient to maintain the classification accuracy. This weight shar-

ing strategy greatly reduces the number of learnable parameters

while being able to maintain the classification accuracies on large-

scale training datasets. Moreover, the non-linear transformations

ofh0 improve the diversity of the feature representations, which re-

duce overfitting especially when training on small tomoderate size

datasets. In such scenarios, improved classification performance

can be obtained compared to the multi-level attention model with-

out applying the weight sharing mechanism.
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Figure 4: The sub-network in the multi-level attention

model that transforms feature embedding hk to hk+1.

Previous work on multi-level feature fusion mostly aggregates

features into a high-level representation (e.g., based on feature con-

catenation [17, 37] or weighted average fusion [13, 22]) before pass-

ing to the classifier. However, such methods can be sensitive to

both the depth of the neural network and the intermediate features

to be fused. For example, the concatenation based feature fusion

method proposed by Yu et al. [37] obtained the best mAP when

fusing the output features of the second and the third intermediate

layers, compared to other combinations of intermediate features

for fusion. Comparatively, our weight sharing based feature fusion

approach is more reliable as being less sensitive to the number of

features in H. This is a desirable characteristic as it makes the tun-

ing of the hyper-parameters of the model much easier than pre-

vious work. Moreover, our approach reduces model overfitting by

using shared weight sub-networks in the attention and the classi-

fier modules. Significant improvements have been obtained when

training on the balanced AudioSet compared to existing methods.

Finally, our multi-level model has the advantage of being parallel

to existing audio tagging systems, and thus can be easily integrated

to achieve additional performance gain. Recall that the feature en-

coder is a relatively independent component in our model, we can

adopt any existing network architecture as an initial feature en-

coder to generate feature h0, and train the whole system (i.e., the

initial feature encoder, together with the non-linear transforma-

tion layers, the attention and the classifier modules) in an end-to-

end fashion.

3.4 Implementation Details

In our multi-level attention model, we use a sub-network as illus-

trated in Figure 4 to transform feature embedding hk to hk+1. A fea-

ture embedding hk is first fed to a fully-connected layer followed

by the exponential linear unit (ELU) as the activation function.

Thereafter, we use batch normalization [11] and Dropout with the

dropout rate set to 0.5. Our multi-level model starts with h0, and

transforms it into the subsequent feature embeddings hk by recur-

sively applying the sub-network in Figure 4. For the AudioSet, we

use the 128-D acoustic features provided by Google as h0 and set

the number of hidden units to be 1024 in the fully-connected layer.

For the DCASE17 dataset, we adopt the system developed by Xu et

al. [33] as the feature encoder and take the input of the RNN as h0,

which has a dimension of 256 for each segment. We set the number

of hidden units to be 256 in the fully-connected layer in Figure 4,

and train the whole system in an end-to-end fashion. The number

of hidden units in the GRU cell in our classifier is set to 256 and

128 for the AudioSet and DCASE17 datasets, respectively.

Class imbalance is commonly seen in large-scale datasets. For

example in AudioSet, the number of samples varies from hundreds

to tens of thousands among different classes. To solve this problem,

we adopt the mini batch balancing strategies used in our competi-

tors [12, 33] for the AudioSet and DCASE17 datasets, respectively,

to make it a fair comparison. For optimization, we train the neural

networks using the Adam optimizer with a batch size of 500 and 64

for the AudioSet and DCASE17 datasets, respectively. The learning

rate is set to 0.001.

The results generated by our proposed multi-level attention

model trained on the same dataset may still differ slightly due to

the randomness in neural networks. To solve this problem, we

apply network ensemble techniques [14] to combine the scores

of individually trained models to obtain improved classification

accuracy. In our experiments, we train both the single-level and

multi-level models five times with random seeds and take their

average as the final prediction scores for each class.

4 EVALUATION

We first introduce the experimental setup in Section 4.1, and then

proceed with the evaluations by performing a step-by-step model

justification and a comparisonwith the state-of-the-art approaches

in weakly labeled audio tagging.

4.1 Experimental Setup

We evaluated our proposed methods using two large-scale weakly

labeled audio datasets, namely the AudioSet [9] and the DCASE17

sound event detection for smart cars [23]. The AudioSet consists of

more than 2M audio clips with 527 annotated sound events, which

is further divided into three disjoint sets: a balanced test set, a

balanced training set, and an imbalanced training set. The sound

events are organized using an expert-defined hierarchical ontol-

ogy, which consists of seven classes on the highest level, namely

human, animal, things, music, natural, environment, and source-

ambiguous for short. The DCASE17 dataset contains around 50K

audio clips annotated with 17 sound events. All the samples are

10-second sound clips drawn from YouTube videos.

Following previous work, we use mean average precision

(mAP), and mean area under ROC curve (mAUC) as the evaluation

metrics on the AudioSet. For the DCASE17 sound event detection

challenge, we use a global confidence threshold of 0.3 for all the

17 sound events, and report precision, recall, and F1 score as the

evaluation metrics.

4.2 Step-By-Step Model Justification

We perform a step-by-step model justification to demonstrate the

effectiveness of each component in our proposed multi-level atten-

tion model with weight sharing. Based on the results, we discuss

the characteristics of our proposed model and its advantages over

the existing work. We also visualize the t-SNE embeddings of the

features learnt by different layers of our proposed multi-level at-

tention model for qualitative evaluation.

Single-level vs. Multi-level Attention Model. We first compared

our multi-level attention model to the single-level attention

model introduced in Section 3.2, and reported the mean average

precision (mAP), and mean area under ROC curve (mAUC)
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Table 1: Audio tagging performance comparison (in %) of

our proposed single-level and multi-level models on the Au-

dioSet, using AudioSet-22K for training.

Depth
Single-level Multi-level

mAP mAUC mAP mAUC

3 27.8 95.4 28.8 95.5

4 27.8 95.4 29.1 95.6

5 27.8 95.3 29.5 95.5

Table 2: Audio tagging performance comparison (in %) of

our proposed single-level and multi-level models on the Au-

dioSet, using AudioSet-2M for training.

Depth
Single-level Multi-level

mAP mAUC mAP mAUC

3 34.9 96.7 36.3 96.9

4 35.2 96.7 36.4 96.9

5 34.9 96.6 36.6 97.0

obtained on the AudioSet. Table 1 shows the results obtained

using the balanced training set (AudioSet-22K) and Table 2

shows the results obtained using the union of the balanced and

imbalanced training sets (AudioSet-2M). As can be seen, the

multi-level model outperformed the single-level model in all cases.

With the depth of the neural network increasing from 3 to 5, the

multi-level model obtained continuously improving results, while

the single-level model performed approximately the same. With a

depth of five, the multi-level model outperformed the single-level

model by 6.1% and 4.9% based on AudioSet-22K and AudioSet-2M,

respectively. The single-level model only used the final output

feature hK (K is the depth of the neural network) of the feature

encoder for supervision. Comparatively, the multi-level model

fused all the K intermediate features in H = {h1, h2, ..., hK} to

make predictions, which greatly improved the descriptiveness of

audio representations and thus enhanced the model’s robustness.

Evaluation on the Weight Sharing Mechanism. We reported the

results obtained by our proposed multi-level attention model with

and without the weight sharing mechanism in Tables 3 and 4. From

Table 3 we can see that improved results have been achieved by

weight sharing using AudioSet-22K in all depths. This is because

the shared attention module and GRU cells among different hk

is able to reduce overfitting to some extent when the number of

training samples is insufficient. On the other hand, to maintain

the classification accuracy, we propose to use independent fully-

connected layers after the GRU cells in the classifier to generate

layer-specific predictions pk. This strategy has been shown to be

effective. As shown in Table 4, with significantly reduced number

of learnable parameters in the model based on weight sharing, we

are still able to obtain competitive classification results when train-

ing with extremely large-scale datasets where overfitting can be

less of a problem.

Table 5 shows the per-class mAP comparison of the multi-level

attention model with the depth set to five. We group audio events

according to the highest level of the AudioSet ontology, and report

Table 3: Audio tagging performance comparison (in %) of

themulti-level attentionmodelwith andwithout theweight

sharing mechanism, using AudioSet-22K for training.

Depth
w/ weight sharing w/o weight sharing

mAP mAUC mAP mAUC

3 28.8 95.5 28.4 95.4

4 29.1 95.6 29.0 95.4

5 29.5 95.5 29.2 95.4

Table 4: Audio tagging performance comparison (in %) of

themulti-level attentionmodelwith andwithout theweight

sharing mechanism, using AudioSet-2M for training.

Depth
w/ weight sharing w/o weight sharing

mAP mAUC mAP mAUC

3 36.3 96.9 36.4 96.8

4 36.4 96.9 36.6 96.9

5 36.6 97.0 36.6 96.9

Table 5: mAP performance comparison (in %) of the multi-

level attention model with and without the weight sharing

mechanism among different high-level audio classes in the

AudioSet.

Class
AudioSet-22K AudioSet-2M

w/ ws w/o ws w/ ws w/o ws

Human 28.9 28.3 35.7 35.8

Animal 25.3 25.0 38.2 38.3

Things 28.6 28.2 36.9 37.0

Music 36.8 36.4 40.9 40.8

Natural 30.7 30.7 37.1 37.0

Environment 19.3 19.4 23.3 23.2

Source-

ambiguous
18.9 18.7 26.1 26.0

the mAP of the audio events belonging to each of the high-level

audio classes. For models trained on the AudioSet-22K, the weight

sharing mechanism improved themAP in themajority of the seven

classes with only a slight mAP decrease in the Source-ambiguous

class. For models trained on the AudioSet-2M, the mAP results ob-

tainedwith andwithout theweight sharingmechanism are approx-

imately the same among different high-level audio classes.

Evaluation on the Depth of the Neural Network. One advantage

of our proposed model is that our model is less sensitive to the

hyper-parameters, e.g., the depth of the neural network. For eval-

uation, we reported the classification results obtained by our pro-

posed multi-level model with different depths in Table 6. Please

note that the depth also equals to the number of features in H to

be fused in our model. We compared our method to one state-of-

the-art embedding-level MIL approach with attention pooling for

weakly labeled audio tagging [13]. As can be seen, the attention-

based feature fusion method proposed by Kong et al. [13] obtained

the best mAP of 0.361with a depth of three. However, their method
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Figure 5: t-SNE embeddings using the features from different layers in the proposed multi-level attentionmodel. The features

are ŷ1 withmAP=0.325, ŷ2 withmAP=0.331, and ŷ3 withmAP=0.332, ŷ4 withmAP=0.325, ŷ5 withmAP=0.331, and ŷ = 1
5

∑5
k=1

ŷk

with mAP=0.337, respectively, from left to right and top to bottom.

Table 6: Performance comparison (in %) with the state-of-

the-art attention model based on different layer depths, us-

ing AudioSet-2M for training.

Depth
Kong et al. [13] Ours

mAP mAUC mAP mAUC

2 35.8 96.8 36.0 96.7

3 36.1 96.9 36.3 96.9

4 35.6 96.9 36.4 96.9

6 34.8 96.8 36.4 97.0

8 33.9 96.7 36.3 96.9

10 33.1 96.6 36.1 96.9

is sensitive to the depth of the neural network, where the mAP

dropped significantly to 0.331 with a depth of ten. Comparatively,

our method is more robust as it outperformed the competitor in all

different settings of the depths. Moreover, our method is less sensi-

tive to the variation of the depth. With a depth of ten, our model is

still able to obtain an excellent mAP of 0.361, which outperformed

our competitor by 9.1% in terms of the mAP.

Visualizations. In order to compare the features learnt by dif-

ferent layers of our proposed multi-level attention model, we per-

formed a two dimensional t-SNE embedding [29] and visualized

the results in Figure 5. The embeddings were generated on a subset

of the AudioSet evaluation set, which consisted of 4228 audio clips

annotated with only one label that belongs to only one of the seven

classes in the highest level of the AudioSet ontology. We used the

527 dimensional feature ŷk generated by the five layer attention

model and reported the corresponding mAP over the 292 classes

remaining in this subset. With weight sharing strategy, the layer-

specific clip-level predictions presented variations, but shared com-

mon patterns at the same time. The mAP obtained by an individual

layer k varied from 0.325 to 0.332, while the average aggregation

of all the five layers achieved the highest mAP of 0.337. It indi-

cates the effectiveness of our proposed multi-level feature fusion

approach based on weight sharing.

4.3 Comparison with the State-of-the-art

We compare our proposed multi-level attention model to the state-

of-the-art audio tagging methods on the AudioSet. The results

are reported in Table 7. Our method outperformed the existing

methods trained on AudioSet-20K by a large margin. Chen et

al. [4] proposed a class-aware attention based embedding-level

MIL approach. They first generated a clip-level audio represen-

tation, based on which a multi-label classifier was trained. Their

model was trained based on the union of the balanced training set

and 30% of the unbalanced training set. Kong et al. [12] proposed

a class-aware attention based instance-level MIL approach. They

first trained an instance-level classifier, and aggregated the scores

based on the class-aware attention. Both of the methods used the

128-dimensional acoustic features pre-trained on the YouTube-8M

as the input and adopted class-aware attention in their system.

However, they only used the features from one layer in their

models for training, which limited the performance of their

proposed methods. To solve this problem, M&mnet-MS [5] and

DNN-MULTI-ATT [37] were proposed to make use of multi-

ple features from intermediate layers for supervision. Chou et

al. trained the M&mnet-MS network using about 1M samples by

removing the clips that were only annotated with either Music

or Speech, the two most popular classes. Yu et al. was able to

achieve a better classification accuracy by introducing a mini

batch balancing strategy and training with the whole AudioSet

samples. However, Yu et al. fused the multi-features based on the

traditional method of feature concatenation. Their system was

able to obtain the best mAP of 0.36 by fusing the features of the

second and third intermediate layers, but performed unstably

among other combinations of intermediate features for fusion.
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Table 7: Audio tagging performance comparison (in %) on

the AudioSet. The results of ResNet-ATT and ResNet-SPDA

are cited from work [5]; the others are cited from their orig-

inal papers.

Methods
# Train

Recs.
mAP mAUC

WLAT [15] 22K 21.3 92.7

ResNet-ATT [32] 22K 22.0 93.5

ResNet-SPDA [7] 22K 21.9 93.6

M&mnet-MS [5] 22K 23.2 94.0

Ours 22K 29.5 95.5

ClaAware-ATT [4] 600K 31.6 -

M&mnet-MS [5] 1M 32.7 95.1

TALNet [31] 2M 36.2 96.5

DNN-ATT [12] 2M 32.7 96.5

DNN-MULTI-ATT [37] 2M 34.0-36.0 96.9-97.0

Ours 2M 36.6 97.0

Instead of using the 128-dimensional acoustic features, Wang et

al. [31] trained their TALNet based on the filterbank features

extracted from audio raw waveforms. However, this significantly

increased the number of model parameters and the time complex-

ity of model training, without achieving equivalent performance

gain in terms of audio tagging. Our model outperformed all

the existing methods. Compared to applying multiple attention

modules to different intermediate layers independently [37], our

method is more computationally efficient as it reuses the attention

sub-network and the GRU cells for different features by weight

sharing. Moreover, our model is more robust to the change of

neural network depth, which reduces the time complexity in

model hyper-parameter tuning.

Next, we compare our method to the state-of-the-art systems

that participated in the DCASE 2017 challenge of sound event de-

tection for smart cars. Vu et al. [30] presented an attention-based

DNN model, which obtained an F1 score of 0.518 on the DCASE17

test dataset. Lee et al. [16] proposed to use an ensemble of convo-

lutional neural networks to detect the weakly labeled audio events.

Each of the networks was trained based on various lengths of anal-

ysis windows for input scaling. Their method obtained the best

precision of 0.703 and an F1 score of 0.57. Xu et al. [33] presented

a gated convolutional neural network with attention-based tem-

poral aggregation method for audio event detection. Our method

adopted their gated CNN as the initial feature encoder to gener-

ate h0, built our own non-linear transformation layers, attention

and classifier sub-networks, and trained the whole system in an

end-to-end manner. We used log-mel spectrogram as the only fea-

ture for input. As can be seen, our method obtained the best recall

and F1 score on the DCASE17 test set. By applying our proposed

multi-level feature fusion strategy, we were able to improve the

F1 score by 2.6%, compared to the F1 score of 0.567 obtained by

Xu et al. without making use of the features generated by the in-

termediate layers. It is worth mentioning that our proposed multi-

level feature fusion approach can be integrated with any exist-

ing single-level models. The improved results we obtained on the

DCASE17 test set indicates that the integration of our proposed

Table 8: Audio tagging performance comparison (in %) on

the DCASE17 test dataset.

Methods Precision Recall F1

Lee et al. [18] 37.6 45.7 41.2

Adavanne et al. [1] 47.5 39.6 43.2

Salamon et al. [26] 44.7 47.0 45.9

Vu et al. [30] 54.2 49.5 51.8

Xu et al. [33] 53.8 60.1 56.7

Lee et al. [16] 70.3 47.9 57.0

Ours 56.0 60.6 58.2

multi-feature fusion approach in existing network architectures

can further boost the system’s performance.

5 CONCLUSION AND FUTUREWORK

We model weakly labeled audio tagging as a multiple instance

learning problem and present a novel multi-level attention model

to perform effective temporal score aggregation and multi-layer

feature fusion. Our model is an instance-level MIL approach. We

segment an input audio clip into segments and aggregate the

temporal segment-level scores based on class-aware attention

pooling. To improve the descriptiveness of acoustic represen-

tations, we use multiple features obtained by a subsequent

non-linear transformations for supervision. The features are

processed by layer-specific class-aware attention and classifier

sub-networks, followed by average pooling to obtain the final

clip-level predictions. To reduce model complexity and overfitting,

we propose a weight sharing strategy among the attention and

classifier sub-networks, which significantly reduces the number

of learnable parameters while being able to obtain competitive or

even better audio tagging results. We have conducted extensive

experiments on the AudioSet and the DCASE17 datasets. The

experimental results show that our proposed method outperforms

existing methods and achieves the state-of-the-art audio tagging

results on both of the datasets.

Currently, we only use one acoustic feature as the model input,

e.g., 128-D embedding on the AudioSet and log-mel spectrogram

on the DCASE17 dataset, and fuse features from intermediate lay-

ers for supervision. In the future, we plan to apply our proposed

feature fusion approach to multimodal inputs of different acoustic

features such as raw waveforms, MFCC, and log-mel spectrogram.

Moreover, our multi-level feature fusion approach can be easily in-

tegrated with existing single-level models. Therefore, we are also

interested in investigating the use of our proposed feature fusion

technique in various audio analysis problems in addition to audio

tagging.
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