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Abstract

In the era of big data, rare category data examples are often
of key importance despite their scarcity, e.g., rare bird au-
dio is usually more valuable than common bird audio. How-
ever, existing efforts on rare category mining consider only
the statistical characteristics of rare category data examples,
while ignoring their ‘true’ interestingness to the user. More-
over, current approaches are unable to support real-time user
interactions due to their prohibitive computational costs for
answering a single user query.

In this paper, we contribute a new model named IRim,
which can interactively mine rare category data examples of
interest over large datasets. The mining process is carried
out by two steps, namely rare category detection (RCD) fol-
lowed by rare category exploration (RCE). In RCD, by in-
troducing an offline phase and high-level knowledge abstrac-
tions, IRim reduces the time complexity of answering a user
query from quadratic to logarithmic. In RCE, by proposing
a collaborative-reconstruction based approach, we are able
to explicitly encode both user preference and rare category
characteristics. Extensive experiments on five diverse real-
world datasets show that our method achieves the response
time in seconds for user interactions, and outperforms state-
of-the-art competitors significantly in accuracy and number
of queries. As a side contribution, we construct and release
two benchmark datasets which to our knowledge are the first
public datasets tailored for rare category mining task.

Introduction
The big data era provides tremendous opportunities for ex-
tracting valuable knowledge from large datasets (Cao et al.
2015). In many real-world applications, it is often the case
that the dataset is mixed with a great number of data ex-
amples belonging to a major category together with a small
number of data examples belonging to a few rare categories,
whereas the rare categories are more valuable than the major
category (Pelleg and Moore 2004; He and Carbonell 2007).
For example, a network access dataset may contain a big
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portion of normal network connections forming the major
category and a small portion of intrusions forming a few
rare categories, which however are usually more significant.
The motivation and aims of rare category mining have en-
abled it to have a wide variety of applications such as fraud-
ulent transaction detection (Zhou et al. 2018), network secu-
rity bug discovering, and forest fire identification in satel-
lite images (Mithal et al. 2017), and etc (He, Tong, and
Carbonell 2010; Svenstrup, Jørgensen, and Winther 2015;
Liu et al. 2017; Cheng et al. 2019).

Following the existing work (Huang et al. 2014; He and
Carbonell 2007; He, Tong, and Carbonell 2010), rare cat-
egory mining can be decomposed into two sequential sub-
tasks, namely RCD (rare category detection) and RCE (rare
category exploration). (1) RCD targets to detect a few data
examples for an undiscovered rare category to prove its exis-
tence in the unlabeled dataset, e.g., detecting an instance of a
network attack. (2) If the user finds the detected rare catego-
ry data examples valuable or interesting, RCE further tries
to identify other similar and interesting data examples in the
same rare category, e.g., identifying interesting instances of
the same attack type as the detected one.

Facing a few challenges such as (1) skewed category dis-
tribution, (2) the non-separability nature of interesting da-
ta examples from uninteresting data examples, and (3) the
extremely limited number of labeling budget of the user,
most of the existing methods (e.g., (He and Carbonell 2007;
Huang et al. 2013; Yu and Lam 2019; Pérez-Ortiz et al.
2019; Feuz and Cook 2017)) have been focused on the dis-
covery of statistically significant data examples of a rare cat-
egory. However, not all rare category data examples are nec-
essarily of equal importance (Vatturi and Wong 2009). For
examples, a user might be interested in only a few fighting
scenes in a rare game instead of all game images; a doctor in
digestive diseases may not be interested in a rare psychopath
instance. This motivates us to identify rare category data ex-
amples that are of interest to a user subjectively besides of
their statistical significance (which is objective).

More importantly, scrutinizing the implementations of ex-
isting methods, e.g., (Vatturi and Wong 2009; Tu et al. 2018),
we empirically found that current RCD approaches often
have quadratic time complexities w.r.t. dataset size in an-



swering a single user query. To demonstrate their high com-
putational costs, we plot the required time of different meth-
ods for answering an RCD query in Fig. 1. The x-axis are
five real-world datasets sorted by their numbers of data ex-
amples, while the y-axis represents the required time in sec-
onds. The methods presented are NNDM (He and Carbonell
2007), HMS (Vatturi and Wong 2009), Clover(Huang et al.
2013), and our method. All experiments are conducted on a
server equipped with 40 Intel Xeon E5-2640V4 vCPUs and
96 GB RAM. We can clearly observe that as the dataset size
increases, the required time increases, which confirms the
challenges in dealing with large datasets. Moreover, when
the dataset size exceeds 494,021 (e.g., on the KDD-CUP
dataset), the existing methods take hours or days to answer
a single query. This is far from achieving the second-level
response time required by interactive systems.
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Figure 1: Required time for answering a single RCD query.
Empirical results for four distinct RCD methods are present-
ed. The x-axis are five datasets sorted by their numbers of
data examples. The numbers in the parentheses show the
numbers of data examples in the corresponding datasets. The
y-axis denotes the required time in seconds.

To address these challenges, we propose a novel online
rare category mining platform, which is able to fast interac-
t with users and effectively identify rare category data ex-
amples of interest over large datasets. The platform is de-
signed to jointly address the two subtasks, namely RCD and
RCE. (1) For RCD, a logarithmic time complexity algorith-
m is proposed to enable real-time user interactions, which to
our knowledge, is two orders of magnitude faster than state-
of-the-art competitors. (2) For RCE, a novel collaborative-
reconstruction approach is presented, which explicitly en-
code user interest using positive and negative contexts.

We also notice that there is a lack of benchmark
datasets for rare category mining. We construct two
benchmark datasets, which are obtained from practical
problems, and make them publicly available. To our
knowledge, they are the first public datasets tailored for
rare category mining task. The datasets will be released at
https://github.com/Bayi-Hu/Interactive-Rare-Category-of-Interest-Mining.

To summarize, the key contributions are:

• Problem formulation. We propose to discover data ex-
amples that not only fulfill rare category compactness as-
sumption but also are interesting.

• Methods. We present a novel collaborative reconstruction
approach for RCE, and propose to model raw big data into

compact knowledge-rich abstractions for RCD.

• Datasets and codes. Our method sets the new state-of-
the-art performance for interactive rare category mining
and overall provides insights into the challenges and op-
portunities in this task. The implementation codes and
datasets will be released upon acceptance.

Related Work
In this section, we briefly review the related work regard-
ing the two subtasks of rare category mining, namely rare
category detection (RCD) and rare category mining (RCE).

Rare Category Detection
RCD is an emerging topic in security and data mining,

which targets to find a few data examples for a rare cate-
gory from an unlabeled dataset. It is firstly formulated by
(Pelleg and Moore 2004), where a rare category is charac-
terized as a tiny and compact cluster of similar data exam-
ples. Following this compactness assumption, (He and Car-
bonell 2007) and (Huang et al. 2013) propose to rank all
data examples according to user specified parameters, and
return top data examples to a user. The user provides labels
that indicate whether a data example belongs to an undiscov-
ered rare category. (He and Carbonell 2009) and (Liu et al.
2014) instead resort to semi-parametric density estimation
and wavelet transform respectively to rank all data exam-
ples. (Vatturi and Wong 2009) employs hierarchical mean
shift clustering to detect rare categories of different scales.
Recently, (Zhou et al. 2015) explores utilizing multi-view
features, while (Tu et al. 2018) introduces a prior-free RCD
method composed of active learning and semi-supervised
hierarchical clustering. (Lin et al. 2018) further presents a
user-guided RCD approach via visualization.

Rare Category Exploration RCE is a natural follow-
up action of RCD, i.e., after detecting a few interesting rare-
category data examples called seeds, we may want to find
more interesting data examples in the same rare category.
(He, Tong, and Carbonell 2010) transforms RCE into a con-
vex optimization problem and proposes to characterize the
entire rare category as the set of data examples within a hy-
perball. (Huang et al. 2014) converts RCE to a local commu-
nity detection problem, which keeps absorbing external data
examples until there is no improvement in local community
quality. (Wu, Xiong, and Chen 2010) advocates to address
the imbalanced category distribution by performing clus-
tering within each large category, producing sub-categories
with relatively balanced sizes. (Zhou et al. 2018) develops a
self-paced framework that gradually learns the rare catego-
ry oriented representation and the rare category exploration
model. It is worth noting that there are research efforts that
jointly address the RCD and RCE tasks, e.g., (Hospedales,
Gong, and Xiang 2013) tries to solve RCD and RCE simul-
taneously with a generative and discriminative model.

Our Approach
In this section, we present the details of our proposed IRim
(Interactive Rare-category-of-interest mining) system. Be-
fore that, we first introduce the basic concepts and assump-
tions in rare category mining.
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Figure 2: (a) An overview of the proposed system, which consists of RCD and RCE. RCD queries are supported by multiple
high-level knowledge spaces, while RCE is conducted by collaborative reconstruction using both positive and negative data
examples. (b) A toy example to illustrate the stable areas.

Concepts and Assumptions
Presented with an imbalanced dataset X = {xi}ni=1, where
the category label for each data example xi ∈ Rd is lacked,
we are interested in interacting with the user to effectively
identify rare category data examples of her/his interest.

Assumptions. A commonly adopted assumption in rare
category mining is the compactness assumption (Zhou et al.
2018; Vatturi and Wong 2009; Wang et al. 2016). That is, da-
ta examples of a rare category are assumed to exhibit intra-
category similarity and inter-category dissimilarity.

Candidate score. Following the compactness assump-
tion, we rank all the unlabeled data examples by their po-
tentials to be from a rare category. Inspired by (He and Car-
bonell 2007; Lin et al. 2018), the rare category candidate
score ski for data example xi is defined as:

ski =
dk

avg{d1, · · · , dk−1}
, (1)

where dj denotes the distance between xi and its jth nearest
neighbor, and avg represents average. The numerator and
denominator measure inter-category and intra-category dis-
tances, respectively. Score ski measures how likely xi is from
a compact rare category that consists of k similar data exam-
ples, higher ski corresponds to higher likelihood. It is worth
pointing out that parameter k specifies the scale (number of
data examples) of the rare category to be detected, a different
value of k leads to different scores for all data examples.

System Overview Given the above background knowl-
edge, now we are ready to present the IRim system. Fig. 2(a)
depicts the overall architecture of IRim, which consists of
two key components: 1) RCD basing on high-level knowl-
edge abstractions, and 2) RCE basing on collaborative re-
construction. Next, we elaborate the two key components.

Rare Category Detection (RCD) Model
RCD seeks to detect a few data examples of an undiscovered
rare category hidden in an unlabeled dataset.

Conventional RCD approaches generally operate in a trial
and error manner (He and Carbonell 2007; Tu et al. 2018):

1) A user selects particular values for the three parameters
in the query triple < k, slow, sup >, where k represents
the expected number of data examples in the rare catego-
ry to be detected, slow and sup denote the lower and up-
per bounds of the rare category candidate score (Eq. 1).

2) This instantiated triple is then submitted as an RCD
query to the model, which computes and returns all the
data examples xi that have candidate scores ski satisfying
slow 6 ski 6 sup. The returned data examples are ranked
by their candidate scores ski .

3) The user investigates the returned data examples and pro-
vides category labels for them. If the user finds the re-
turned data examples insignificant, she will adjust the pa-
rameters in the triple and executes another RCD query to
obtain a different set of returned data examples.

This conventional framework suffers from severe limita-
tions: (1) A good parameter setting for the triple is the key
to gain insight into the data (Cao et al. 2015). However, in
this framework, the user has to consistently re-submit iso-
lated queries with different parameter settings in a trial-and-
error manner. This is extremely inefficient because of the
infinite number of possible parameter settings. (2) To an-
swer a query, candidate scores {ski }ni=1 of all data examples
are computed from scratch using Eq. 1, which requires time
consuming kNN (k nearest neighbor) calculations and thus
has anO(n2) time complexity. Consequently, the user has to
wait hours or days to get the result for a single RCD query.

To address these issues, we propose to divide the RCD
process into offline and online phases. In the offline phase,
we construct high-level knowledge base to avoid queries
being executed from scratch, and guide the user to ex-
plore different parameter settings in a systematic way. The
knowledge base mainly includes parameter setting panora-
ma, ranking curve, and kNN relationship.

Parameter Setting Panorama Our insight is that the
three parameters in the query triple < k, slow, sup > actual-
ly fall in a 2D space since slow and sup are in one dimension.
Fig. 2(b) visualizes the 2D space, which is spanned by pa-
rameter k in the x-axis and candidate score ski in the y-axis.



In the figure, kmin and kmax stand for the user-specified
lower and upper bounds for k value, respectively. For a fixed
k ∈ [kmin, kmax], its parameter space corresponds to a col-
umn in Fig. 2(b). Let < ŝk1 , ŝ

k
2 , · · · , ŝkn > denote the de-

scending ordered scores of all data examples under a fixed k,
and < x̂1, x̂2, · · · , x̂n > be their corresponding data exam-
ples. As depicted in Fig. 2(b), the parameter space of k are
partitioned into n+ 1 areas (rectangles in the figure) by the
sorted scores {ŝki }ni=1, with the n+1 areas being (−∞, ŝkn),
(ŝkn, ŝ

k
n−1), (ŝ

k
n−1, ŝ

k
n−2), · · · , (ŝk2 , ŝk1), and (ŝ1,+∞).

Interestingly, once we fix k and sup in the query triple, no
matter how we adjust the value of slow within any one of the
n + 1 areas, the returned result, i.e., all data examples that
have scores ski within range (slow, sup), remains the same.
This conclusion can be easily proved as below, while each
of the n+ 1 areas is called a stable area.

Proof. Given the descending ordered scores
< ŝk1 , ŝ

k
2 , · · · , ŝkn > for all data examples, without

loss of generality, sup can be assumed to fall in (ŝkm+1, ŝ
k
m),

i.e., ŝkm+1 < sup < skm. We fix k and sup, and adjust slow
within an area (ŝkj+1, ŝ

k
j ). For ∀slow ∈ (ŝkj+1, ŝ

k
j ), condi-

tions ŝkj+1 < slow and slow < ŝkj hold, so the scores that
fall in range [slow, sup] are {ŝj , ŝj−1, ŝj−2, · · · , ŝm+1} for
∀slow ∈ (ŝkj+1, ŝ

k
j ). As a result, the returned data examples

for the query triple < k, slow, sup > remain the same as
{x̂j , x̂j−1, · · · , x̂m+1} for ∀slow ∈ (ŝkj+1, ŝ

k
j ). In other

words, once we fix k and sup in the query triple, no matter
how we adjust the value of slow within an area (ŝkj+1, ŝ

k
j ),

the returned result remains the same. It is worth pointing
out that variants of this proof apply if we assume sup fall on
the area boundaries, i.e., sup = ŝkm,m ∈ [1, n]. �

Similarly, once we fix k and slow in the query triple, no
matter how we adjust the value of sup within any one of the
n+ 1 areas, the returned data examples remain the same.

Therefore, given a specific k, its parameter space is par-
titioned into n + 1 stable areas. Within a stable area, no
matter how we adjust the value of slow or sup, the re-
turned data examples do not change. Traverse all possible
k ∈ [kmin, kmax], the entire parameter space is partitioned
into (n+1)∗(kmax−kmin+1) stable areas, which are shown
by the rectangles in Fig. 2(b). These stable areas form the
entire parameter setting panorama. It is worth pointing out
that: (1) despite the infinite number of possible parameter
settings for the query triple, the number of possible returned
results is limited to at most (n + 1) ∗ (kmax − kmin + 1),
and (2) the limited number of stable areas offers the user
an opportunity to avoid blindly trying all possible parameter
settings since different sup (or slow) values within a stable
area yield the same result. To store the parameter setting
panorama, for each specific k, we only need to store n sort-
ed candidate scores and their corresponding data example
indices. In total, n ∗ (kmax − kmin + 1) scores and indices
are stored.

Ranking Curve and kNN Relationship Besides the
parameter setting panorama, we further construct (1) kNN
abstraction, which stores the kmax nearest neighbors of each
data example, and (2) ranking abstraction, which maintains

the score ranking of each data example under each feasible
k value. These multi-view semantic spaces facilitate user’s
insights into the data and provide supporting evidence when
the user is labeling an ambiguous data example.

Online query. For an RCD query with parameter setting
< k, slow, sup >, we can easily answer it by consulting the
parameter setting panorama. More specifically, as shown in
Fig. 2(b), we adopt binary search to lookup the positions of
slow and sup in the ranked score list {ŝki }ni=1, and then in-
tercept the scores in the ranked list that fall in [slow, sup]. S-
ince for each score ŝki , its corresponding data example index
is already stored in the offline phase, we can easily return all
data examples that have scores within [slow, sup]. Overal-
l, the time complexity for answering an RCD query in our
model is O(log(n)), while it is O(n2) for existing methods.

Rare Category Exploration (RCE) Model
RCE is a natural follow-up action of RCD, i.e., after detect-
ing a few interesting or valuable rare-category data exam-
ples, RCE further seeks to identify other similar and inter-
esting data examples in the same rare category. Formally,

RCE problem formulation. Given (i) few-shot positive
data examples {xp}|P |p=1 that are labeled as interesting data
examples of a rare category C, and (ii) optionally few-shot
negative data examples {xg}|G|g=1 that are labeled as uninter-
esting, RCE aims to identify other interesting data examples
of C by interacting with the user.

Positive data examples {xp}|P |p=1 are often referred to as
seeds. The unique challenges of RCE (Zhou et al. 2018)
come from (1) the extremely limited number of labeled data
examples, (2) the fact that the support region of interesting
data examples may be non-separable from that of uninter-
esting ones in the feature space, and 3) the subjective na-
ture of user interest. Note that the positive and negative data
examples are obtained in the RCD process, where the user
provides labels for the returned data examples.

Conventional approaches (He, Tong, and Carbonell 2010;
Wu, Xiong, and Chen 2010) adopt supervised methods
such as imbalanced classification or convex optimization for
RCE, which heavily rely on a number of labeled data ex-
amples for training. When presented with only one or a few
labeled data examples, their performance degenerates great-
ly. To address this issue, (Huang et al. 2014) and (Liu et al.
2015) propose semi-supervised methods using local com-
munity detection and wavelet transform, respectively. These
methods, however, consider only the rare category compact-
ness characteristics and ignore the true interest of the user.

We propose to explicitly encode both compactness as-
sumption and user interest in RCE using collaborative re-
construction. In particular, for an unlabeled data example
xi, we collaboratively reconstruct xi by using either pos-
itive or negative data examples. Then, the residuals r+i and
r−i for reconstructing xi using either positive or negative da-
ta example set can be computed, respectively. r+i measures
the distance between xi and the positive data example set,
while r−i measures the distance between xi and the negative
data example set. We rank all the unlabeled data examples
xi by ri = r−i − r

+
i , and ask the user to label the top data



example x, i.e., indicating x is positive (interesting) or neg-
ative (uninteresting). Afterwards, we update the positive or
negative data example set accordingly and re-rank the un-
labeled data examples for another round of interesting data
example mining.

We first use all positive data examples to reconstruct xi.
Formally, let P = {xp}|P |p=1 denote the positive data exam-
ple sets. We model all the positive data examples as a hull
by hull(P ) = Pw, where w = [w1, w2, ..., w|P |]

T is the
weight vector for all positive data examples and

∑
wi = 1.

We reconstruct an unlabeled data example xi using all posi-
tive data examples with the objective to minimize the recon-
struction residual as follows:

min
w,c
‖Pw − xic‖22 + α1‖w‖2 + α2‖c‖2

s.t.
∑

wj = 1,
(2)

where c is the coefficient (scalar) for xi, while α1‖w‖2,
and α2‖c‖2 are the regularization terms. Here l2-norm reg-
ularization is used to achieve a closed-form solution. Con-
straint wj = 1 is required by the hull definition (Zhu et al.
2014) and can avoid the trivial solution wj = c = 0 (Liu et
al. 2016). Element wj corresponds to the weight of the jth
positive data example. By minimizing the distance between
Pw and xic, different wj will possess distinct values, thus
each positive data examples makes its individual contribu-
tion in the final representation of xi.

Solution derivation for minimizing Eq. 2. To solve E-
q. 2, we transform Eq. 2 into its Lagrangian form:

f(w, c, λ) = ‖Pw − xjc‖22 + α1‖w‖2 + α2‖c‖2
+ λ(ew − 1)

(3)

where e is a row vector with all elements equal to 1. Let

M = [P , − xj ], z =

[
w
c

]
, U =

[
α1I 0
0 α2I

]
and

v = [e, 0]T , then Eq. (3) can be deformed into:

f(z, λ) = zT (MTM)z + zTUz + λ(vTz − 1) (4)

By setting the gradients w.r.t. z and λ to zero:
∂f

∂z
= (MTM)z +Uz +

1

2
λv = 0

∂f

∂λ
= vTz − 1 = 0

(5)

we finally arrive at the closed form solution to Eq. 2:

z =
(MTM +U)

−1
v

vT (MTM +U)
−1

v
, λ = − 2

vT (MTM +U)
−1

v
(6)

�
After solving Eq. 2, we can obtain the optimal weight

vector w∗ and optimal coefficient c∗. We define the dis-
tance between xi and positive data example set P as r+i =
‖Pw∗ − xic

∗‖22.
Similarly, we then use all negative data examples to recon-

struct xi. Let r−i be the distance between xi and negative set
G, namely r−i = ‖Gω∗ − xiς

∗‖22. Note ω∗ and ς∗ are the
optimal weight vectors obtained when reconstructing xi us-
ingG. We rank unlabeled data examples {xi}ni=1 according

to {r−i − r
+
i }ni=1 and request the user to label the top data

example.
Discussions. We would like to point out that we do not ac-

tually reconstruct all the unlabeled data examples. Instead,
we only reconstruct the unlabeled data examples that have
similar candidate scores as the seeds under k = k0, where
k0 is the parameter value for k under which the seeds are
detected. This is because data examples in the same rare cat-
egory are within a same compact cluster, and thus should
have similar candidate scores.

Experiments
In this section, we evaluate the proposed methods on five
diverse and complex datasets. The datasets were obtained
from real-world applications in different fields and involve
different data types including images, audio, and numerical
data. We seek to answer the following research questions.
• Q1: How is the efficiency of the proposed RCD and RCE

models comparing to state-of-the-art methods? Can they
achieve second-level response time on large datasets to
support real-time user interactions?

• Q2: Can the proposed RCE model effectively capture user
interest? How is its accuracy performance comparing to
existing RCE approaches?

• Q3: Are the high-level knowledge spaces useful in reduc-
ing the number of user queries in RCD? Can they facilitate
systematic and deeper insights into the data?
Next, we first present the experimental settings, followed

by answering the above research questions one by one.

Experimental Settings
Datasets. Since there is a lack of benchmark datasets that are
specially tailored for rare category mining task, we construct
two datasets, Game and Bird, which come from two practi-
cal problems and contain images and audio data, respective-
ly. Game consists of 331, 853 images from electronic games.
The images are sampled from videos on the web1 and have
no category labels. Conventionally, in order to discover in-
teresting rare game images, the user has to carefully sift
through all the images, which is tedious and time consum-
ing (Changpinyo, Chao, and Sha 2017; Ma and Zhang 2019;
Huang, Long, and Wang 2019). Rare category mining meth-
ods enable the user to fast identify interesting rare game im-
ages out from the massive dataset. We employed the ResNet-
50 model (He et al. 2015) pre-trained on ImageNet to extrac-
t a 2,048 dimensional feature for each image. Bird dataset
consists of 6,495 audio recordings of various birds. We ex-
tracted acoustic features from the audio utilizing the CN-
N network proposed in (Kahl et al. 2017). Besides Game
and Bird datasets, three public datasets are also engaged in
the experiments, namely Kddcup (on network intrusion), A-
balone (on physical measurements of abalones), and Shut-
tle (on space shuttle), which are widely used in existing
works (He and Carbonell 2007; Vatturi and Wong 2009;
Zhou et al. 2018; Huang et al. 2013). The properties of the 5
datasets are summarized in Table 1.

1Mainly from https://www.twitch.tv/directory



Table 1: Properties of different datasets.

Dataset Dimensions Number of Data Exmaples
Abalone 7 4,177

Bird 512 6,495
Shuttle 9 58,000
Game 2,048 331,853

Kddcup 41 494,021

Parameter Settings. For RCD, the lower bound kmin of
the k values is constantly set to 2 across different datasets,
while the upper bound kmax is set to 200, 500, 200, 1,000,
and 1,000 respectivley for Abalone, Bird, Shuttle, Kddcup,
and Game datasets. All experiments were conducted on a
server equipped with 40 Intel Xeon E5-2640V4 vCPUs and
96 GB RAM.
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Figure 3: Accuracy comparison between seven distinct RCE
methods on ten different rare categories. I and II denote the
first and second rare categories in the dataset.

Study of Response Time (Q1)
First, we benchmark our approach against state-of-the-art
methods on all the five datasets, with a concentration on the
response time required for a user interaction.

Response time in RCD. In RCD, the user interacts with
the model by specifying a query triple and requesting for
ranked rare category candidates that match this specification.
Table 2 illustrates the average response time of five state-of-
the-art methods for a single RCD query, where ’-’ denotes
longer than 24 hours (86,400 seconds). The five methods
presented are Interleave (Pelleg and Moore 2004), NNDM
(He and Carbonell 2007), HMS (Vatturi and Wong 2009),
Clover (Huang et al. 2013), and our IRim. (1) From the table,
our first observation is that as the dataset size n increases,
the response time of each method increases. (2) The second
observation is that our method consistently and significantly
outperform existing methods. In particular, for the Kddcup
dataset with 494, 021 data examples, our method is shown
to be 100 times faster than other methods. We conjecture the
reasons behind these observations are: the time complexity
for answering a user query in our RCD model is O(log(n))
while it is usually O(n2) for existing methods. We would
like to highlight that 1s response time is achieved by our
method even for large dataset with more than 0.49 million
data examples.

Response time in RCE. We further evaluate the efficien-
cy of different RCE methods. The time (in seconds) for one
round data example interestingness ranking in RCE is shown

Table 2: Response time (in seconds) for an RCD query.

Methods Abalone Bird Shuttle Game Kddcup
Interleave (Pelleg and Moore 2004) 0.324 4.341 2.420 410.663 76.960
NNDM (He and Carbonell 2007) 0.175 0.536 393.894 - -
HMS (Vatturi and Wong 2009) 4.689 5.447 5406.318 - -

Clover (Huang et al. 2013) 0.498 2.696 1684.139 - -
our IRim 0.047 0.081 0.133 0.568 0.762

Table 3: Efficiency comparison of different RCE methods.
The time unit is seconds. ’-’ denotes longer than 24 hours.

Our IRim CC NN FRANK RACH HMS R-HSKMS
Abalone 0.271 0.475 0.398 0.284 1.848 0.553 0.597

Bird 0.265 0.571 0.545 0.294 2.32 0.629 0.753
Shuttle 0.284 1.088 1.073 6.427 91.549 1.078 1.104
Game 0.577 7.452 6.182 165.9 - 6.503 8.107

Kddcup 0.498 3.912 3.769 148.47 - 2.376 2.689

in Table 3. A total of seven methods are studied, including
FRANK (Huang et al. 2013), RACH (He, Tong, and Car-
bonell 2010), HMS (Vatturi and Wong 2009), R-HSKMS
(Tu et al. 2018), NN (nearest neighbor model), CC (clus-
ter centroid model), and our IRim approach. The NN model
ranks the unlabeled data example by their smallest distance
to a positive data example, while CC model ranks the unla-
beled data example by their smallest distance to the centroid
of all seeds (i.e., positive data examples). For fair compar-
ison, each time the seven methods were presented with the
same set of seeds. For each RCE method, we tried differ-
ent seed sets and report the averaged response time. From
Table 3, we can observe that IRim significantly outperforms
existing methods across different datasets. We can also see
that besides our model NN performs the best.

Accuracy Comparison with Existing RCE
Approaches (Q2)
In this subsection, we compare our RCE approach against
state-of-the-art methods employing the accuracy metric
(Zhou et al. 2018; He and Carbonell 2007; Huang et al.
2014), namely the ratio of true interesting data examples to
all sampled data examples.

In Fig. 3, the performance of seven different methods
are presented in terms of accuracy. In the figure, datasets
Abalone, Bird, Shuttle, Kddcup, and Game are abbreviat-
ed as A, B, S, K, and G, respectively. For each of the five
datasets, we selected two rare categories for RCE. Thus, in
total ten different rare categories are engaged in the evalua-
tion. The two rare categories of each dataset are respective-
ly denoted as I and II . Empirical evidences in Fig. 3 show
that IRim consistently and significantly outperforms existing
methods on different datasets. More specifically, comparing
to the state-of-the-art method, IRim achieves a 11.75% im-
provement in accuracy. For RACH, since it exceeds the time
threshold (24 hours) on Kddcup and Game, its results on the
two datasets are omitted.

We attribute the good performance of our method to it-
s ability to actively learn from both positive and negative
neighboring contexts. Fig. 4 visualizes an example scenario
where the interesting data examples is non-separable from
uninteresting ones in the feature space. In Fig. 4 (a), the data
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Figure 4: Analysis on the labeling strategies of our RCE method and existing methods.
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Figure 5: Query number comparison on five different datasets. The first row plotted in red represents the number of queries of
IRim. The second to fifth rows report the results for Clover, NNDM, HMS, and Interleave respectively.

examples plotted in orange are interesting, while data exam-
ples plotted in blue are uninteresting. Red data example A is
a given seed data example. As shown by the data examples
with crosses in Fig. 4 (b), starting from A existing method-
s, such as CC, NN, and FRANK, blindly and consistently
sample data examples in the left since they only consider
the compactness assumption and ignore negative feedbacks.
This greatly reduces their accuracy. In contrast, as shown in
Fig. 4 (c), where the plus and minus signs represent positive
and negative labels respectively, our method will adjust to
sample data examples in the right side of A after few neg-
ative feedbacks in the left side. For HMS and R-HSKMS,
their poor performance mainly dues to the fact that they are
easily affected by noisy data examples and thus often drift
to invalid centroids. For RACH, a number of labeled data
examples are required, when the labeled data examples are
extremely limited, its performance degenerates.

Number of Queries Comparison with Existing
RCD Approaches (Q3)
In this subsection, we compare our RCD model against ex-
isting methods with respect to number of queries.

Labeling is tedious and time-consuming, a better RCD
model should require less queries to detect an interesting
rare category data example. Therefore, we evaluate our R-
CD model on the number of queries required to detect a
seed. Fig. 5 demonstrate the results for detecting 20 rare cat-
egories in Abalone dataset, 30 in Bird, 7 in Shuttle, 12 in
KDDcup, and 20 in Game, respectively. For all the meth-
ods, the average query number over 17 participants are re-
ported. For NNDM, HMS, and CLOVER, since they exceed
the time threshold (24 hours) for a single query on Game
and Kddcup, their results are omitted for the two datasets.
In Fig. 5(a), the first row plotted in red represents the num-

ber of queries of IRim for detecting the first seed of each
rare category in Abalone dataset. The second to fifth rows
report the results for Clover, NNDM, HMS, and Interleave
respectively. Query numbers larger than 100 are truncated to
100. Figs. 5(b)–(e) follow the same convention. Empirical
evidences show that our method consistently requires much
less queries than other methods. We attribute this mainly to
the stable areas constructed in the parameter setting panora-
ma. Different from existing methods, for the infinite param-
eter settings of a stable area, we only need to try one of
them. Other semantic knowledge spaces such as kNN rela-
tionship further facilitate user’s insights and reduce number
of queries.

Conclusions
We have proposed a novel rare-category-of-interest mining
system termed IRim, which is able to interact with the us-
er in real time and actively learn true interest of the user.
For RCE, a collaborative-reconstruction based approach has
been proposed to explicitly incorporate positive and negative
contexts for user interest modeling. For RCD, a logarithmic
time complexity method has been introduced. Extensive ex-
periments demonstrate that IRim addresses user interactions
within 1 second, and significantly outperforms state-of-the-
art competitors. For future work, we will investigate incor-
porating expert knowledge graph in rare category mining.
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Pérez-Ortiz, M.; Tiño, P.; Mantiuk, R.; and Hervás-
Martı́nez, C. 2019. Exploiting synthetically generated da-
ta with semi-supervised learning for small and imbalanced
datasets. In AAAI 2019, 4715–4722.
Svenstrup, D.; Jørgensen, H. L.; and Winther, O. 2015.
Rare disease diagnosis: a review of web search, social me-
dia and large-scale data-mining approaches. Rare Diseases
3(1):e1083145.
Tu, D.; Chen, L.; Yu, X.; and Chen, G. 2018. Semisuper-
vised prior free rare category detection with mixed criteria.
IEEE Trans. Cybernetics 48(1):115–126.
Vatturi, P., and Wong, W. 2009. Category detection using
hierarchical mean shift. In SIGKDD 2009, 847–856.
Wang, S.; Huang, H.; Gao, Y.; Qian, T.; Hong, L.; and Peng,
Z. 2016. Fast rare category detection using nearest centroid
neighborhood. In APWeb, 383–394.
Wu, J.; Xiong, H.; and Chen, J. 2010. COG: local decom-
position for rare class analysis. Data Min. Knowl. Discov.
20(2):191–220.
Yu, Q., and Lam, W. 2019. Data augmentation based on
adversarial autoencoder handling imbalance for learning to
rank. In AAAI 2019, 411–418.
Zhou, D.; He, J.; Candan, K. S.; and Davulcu, H. 2015. MU-
VIR: multi-view rare category detection. In IJCAI, 4098–
4104.
Zhou, D.; He, J.; Yang, H.; and Fan, W. 2018. SPARC:
self-paced network representation for few-shot rare category
characterization. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Da-
ta Mining, KDD 2018, London, UK, August 19-23, 2018,
2807–2816.
Zhu, P.; Zuo, W.; Zhang, L.; Shiu, S. C.; and Zhang, D.
2014. Image set-based collaborative representation for face
recognition. IEEE Trans. Information Forensics and Securi-
ty 9(7):1120–1132.


